
 Page 1

V4Design
Visual and textual content re-purposing FOR(4) architecture, Design and virtual

reality games

H2020-779962

D5.1

Ontology network and reasoning
framework

Dissemination level: Public

Contractual date of delivery: Month 10, 31/10/2018

Actual date of delivery: Month 10, 31/10/2018

Workpackage: WP5: Content integration, retrieval and presentation

Task: T5.1: Semantic content representation

T5.2: Semantic integration and reasoning

Type: Report

Approval Status: Final version

Version: 3.0

Number of pages: 62

Filename: D5.1_V4Design_OntologyNetworkAndReasoningFramework_
20181031_v3.0.pdf

Abstract

This deliverable documents the semantic models for mapping the V4Design-pertinent
conceptualisations on ontology-related constructs. In addition, it describes the functionality
of the first version of semantic integration and reasoning techniques. First, the purpose,
scope, intended users and the requirements of the ontologies as identified at this phase of
the project are described. Their specification has been driven by the WP7 initial user
requirements identified for the individual scenarios, as well as by the dependencies incurring
from the interaction with the WP3 and WP4 analysis components and the WP6 functionality
aspects. Second, the literature is reviewed, covering both state of the art languages for

 Page 2

co-funded by the European Union

formal knowledge representation and existing ontologies covering domains and
requirements relevant to those of V4Design. Third, the current status of the V4Design
ontologies is described, discussing the main entities they comprise. Fourth, the basic
principles that underpin the first preliminary version of the WP5 reasoning framework
towards reasoning and interpretation are described. Last, the report presents examples of
the created annotation models.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

D5.1 – V3.0

Page 3

History

Version Date Reason Revised by

0.0 12/09/2018 ToC creation Georgios Meditskos,
Stefanos Vrochidis

0.2 5/10/2018 User requirement analysis and
competency questions creation

Eleni Kamateri

0.3 8/10/2018 State of the art analysis Eleni Kamateri,
Georgios Meditskos

0.5 10/10/2018 Initial annotation models and reasoning Georgios Meditskos

0.6 14/10/2018 An example of the annotation pipeline
using the simulation example

Georgios Meditskos

1.0 15/10/2018 First draft circulated to WP5-related
partners for comments

Georgios Meditskos

2.1 17/10/2018 Pre-final draft sent for internal review Georgios Meditskos

2.2 23/10/2018 Internal review comments Simon Mille (UPF)

3.0 25/10/2018 Preparation of the final draft Georgios Meditskos,
Stefanos Vrochidis

Author list

Organization Name Contact Information

CERTH Georgios Meditskos gmeditsk@iti.gr

CERTH Eleni Kamateri ekamater@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

mailto:gmeditsk@iti.gr
mailto:ekamater@iti.gr
mailto:stefanos@iti.gr

D5.1 – V3.0

Page 4

Executive Summary

The present deliverable reports mainly on the work carried out within T5.1 and T5.2,
relevant to the development of the V4Design ontologies and the representation and
mapping of content on ontological entities. In addition, it describes the first preliminary
framework towards reasoning.

More specifically, the present deliverable presents the current content of the V4Design
ontologies and the methodology adopted to build them. Based on the requirements set
forth by WP7 and the dependencies incurring from the interaction with the other WPs
(WP6), the purpose, scope, intended users and uses, and the requirements of the V4Design
ontologies were identified. These specifications, along with the modelling insights from the
relevant literature, served as guidelines for building the first version of the V4Design
ontologies that currently comprises modules for capturing the analysis results (metadata) of
other V4Design modules, such as aesthetics, localisation of buildings and objects, 3D model
attributes, named concepts and entities derived from text analysis. All this information is
used to build the V4Design knowledge graphs that capture and interlink metadata for the
derived assets.

In addition, we present a preliminary version of the reasoning layer whose purpose is to
enrich the supported semantics and metadata both at the terminological level, by defining
additional class and property axioms, and at the assertional level by incorporating inference
rules. The additional inference capabilities will afford the derivation of interpretations that
are useful at query-time, i.e. when the end users will perform queries to retrieve relevant
assets from the V4Design platform.

The work presented within this document presents the preliminary version of the V4Design
ontologies, reasoning and interpretation framework. More elaborate ontology-based
interpretation and reasoning tasks will be tackled in future versions of the framework and
reported in upcoming deliverables.

D5.1 – V3.0

Page 5

Abbreviations and Acronyms

BIM Building Information Modelling

CQ Competency Question

DCMI Dublin Core Metadata Initiative

DL Description Logics

DnS Descriptions and Situations

EDM Europeana Data Model

GIS Geographic Information Systems

KB Knowledge Base

MS Milestone

NFR Non-Functional Requirements

ORSD Ontology Requirements Specification Document

OWL Web Ontology Language

PUC Pilot Use Case

RDF Resource Definition Language

SEM Simple Event Model

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inferencing Notation

SWRL Semantic Web Rule Language

SWRL Semantic Web Rule Language

VR Virtual Reality

WP Work Package

D5.1 – V3.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 METHODOLOGY FOR MODELLING REQUIREMENTS .. 11

2.1 Ontology development 101 methodology .. 11

3 USER REQUIREMENTS RELEVANT TO ONTOLOGIES & REASONING 12

4 ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT .. 14

5 STATE OF THE ART ... 19

5.1 Web Ontology Language .. 19
5.1.1 DL Reasoning .. 19
5.1.2 DL reasoning services ... 20
5.1.3 OWL and OWL 2 ... 21
5.1.4 Rules ... 22

5.2 Ontologies relevant to the V4Design domain ... 23
5.2.1 Observations and events ... 24
5.2.2 Content and context .. 25
5.2.3 Multimedia content ... 28

5.3 Annotation models .. 29
5.3.1 Web Annotation Data Model ... 30
5.3.2 Europeana Data model .. 31

5.4 Discussion ... 32

6 V4DESIGN ANNOTATION MODEL AND REASONING FRAMEWORK 34

6.1 V4Design Annotation Model .. 34
6.1.1 V4Design Annotation Classes ... 35
6.1.2 V4Design Views .. 38
6.1.3 KB Population ... 42
6.1.4 Other annotation properties ... 42

6.2 Ontology-based Reasoning Framework .. 43
6.2.1 Reasoning Architecture .. 44
6.2.2 Inference Rules .. 45

7 ONTOLOGY VALIDATION ... 47

7.1 Building Localisation .. 47

D5.1 – V3.0

Page 7

7.2 Aesthetics .. 49

7.3 Text analysis .. 50

7.4 3D Model Reconstruction .. 51

7.5 Language Generation ... 53

8 CONCLUSIONS ... 56

9 REFERENCES .. 57

A. APPENDIX ... 60

A.1. Simulation example RDF annotation graph .. 60

A.2. Vocabulary mappings .. 61

A.3. Ontologies ... 62

D5.1 – V3.0

Page 8

1 INTRODUCTION

One of the cardinal objectives of WP5 is to provide the framework for encoding, aggregating
(T5.1), and semantically analysing information (T5.2) relevant to the V4Design application
domain. In particular, WP5 provides the knowledge structures and vocabularies (ontologies)
for capturing the structure and semantics of:

 Aesthetic concept extraction for emotion recognition from images (WP3)

 Key concepts, named entities and conceptual relations extracted via/through the
analysis and understanding of textual content (WP3)

 Localization of the interior and exterior of buildings in visual content that determine
the presence of buildings and interior objects in movies and documentaries (WP4)

 3D model reconstruction metadata derived from the visual content (WP4)

 Relations among 3D objects with their sub-elements of the constructed BIM or GIS
models (WP5 / T5.3)

 Text generation that summarises basic attributes of the generated 3D objects (WP5 /
T5.4, T5.5)

The logical dependencies of WP5 with the other WPs of the V4Design project are depicted in
Figure 1. The Figure also depicts the dependencies with WP6 and WP7 relevant to the
development of the modules that will be integrated in the system and the feedback needed
from the users with respect to requirements and evaluation.

In order to promote interoperability, extensibility and sharing, WP5 reuses and extends
existing standards for defining the vocabulary of the annotations, as well as the patterns for
associating these vocabularies with the generated assets. More specifically, the metadata
vocabularies are defined in the Web Ontology Language (OWL 21 (Grau et al. 2008)), the
W3C standard for defining and sharing ontologies. Similarly, the metadata are associated
with assets using the Web Annotation Data Model (Sanderson, Ciccarese, and Young 2017),

1
 https://www.w3.org/TR/owl-profiles/

Figure 1: Logical dependencies of WP5 with the other WPs

https://www.w3.org/TR/owl-profiles/

D5.1 – V3.0

Page 9

which provides an extensible and interoperable framework for expressing annotations. This
model was published by the W3C Web Annotation Working Group as a Recommendation
(since 23 February 2017), describing a common approach to express annotations in a
manner that is simple and convenient, while at the same time enables more complex
requirements.

The population of the V4Design ontologies is done automatically by mapping the
information provided as input by other components of the system. To this end, WP5
develops the necessary algorithms and interfaces for the structural and semantic mapping of
data among different schemas and vocabularies, creating interlinked RDF-based knowledge
structures pertinent to the assets derived by the V4Design modules. For example, the
aesthetics and objects extracted from different modules on the same visual content are
interlinked in the WP5, so as to create a unified metadata annotation graph.

Finally, WP5 provides the reasoning layer, whose purpose is to address WP5’s reasoning
requirements, in the form of ontology-based axiomatisations (e.g. complex class descriptions
and property axioms) and inference rules. The underlying reasoning techniques will afford
the derivation of knowledge-driven interpretations, enabling the system to abstract from
incoming information and enrich the underlying knowledge graphs. This combination of
semantically rich and interlinked knowledge graphs will foster the retrieval of assets based
on semantic relationships and not simply on keyword-based search, improving the
understanding of the users’ intent and the contextual meaning of the provided terms. In
addition, the interpretation framework will be able to cope with partial and imperfect
information, recognising the context of the incoming information that will be semantically
coupled and interlinked with semantic knowledge structures.

Figure 2 presents the conceptual architecture of WP5 that consists of the following entities:

 Knowledge Base (KB), that provides native RDF storage and querying services

 Population, which implements the mapping services of input provided by other
components

 Reasoning, which implements the reasoning framework combining native OWL 2
reasoning and custom rules

 Linked Data, which implements linked data design principles to further enrich the
derived 3D models

 Text Generation, which generates descriptive text based on the metadata of the
assets in the KB

The remainder of this document is structured as follows: Section 2 overviews the adopted
methodology for the creation of the V4Design ontologies. Section 3 describes the user
requirements that are relevant to WP5 modelling and reasoning framework. Section 4
reports the modelling specifications of the V4Design ontologies. Section 5 reviews the
relevant literature for reasoning, ontologies and annotation models. Section 6 presents the
first version of the V4Design ontologies guided by the specifications (section 4), along with
the modelling insights derived from the literature analysis (section 5). It also describes the
basic principles that underpin the first preliminary version of WP5’s reasoning framework
towards intelligent knowledge-driven reasoning, contextualised aggregation and
interpretation. Section 7 presents how the created models are applied on a set of examples
for validation purposes, while Section 8 discusses the results and concludes the document.

D5.1 – V3.0

Page 10

Figure 2: Conceptual architecture of the modules involved in WP5

D5.1 – V3.0

Page 11

2 METHODOLOGY FOR MODELLING REQUIREMENTS

2.1 Ontology development 101 methodology

There are many ways to model a domain using ontologies and the ontology development is
essentially an iterative process. In this sense, there are several methodologies for ontological
engineering such as On-To-Knowledge (OTK) (Staab et al. 2001), METHONTOLOGY
(Fernández-López, Gómez-Pérez, and Juristo 1997), United Process for Ontologies (UPON)
(De Nicola, Missikoff, and Navigli 2005) and Ontology Development 101 (Noy and
McGuinness 2001). Most of these methodologies introduce common features and
development guidelines.

For the purposes of the V4Design ontological framework, we adopted the methodology of
Ontology Development 101 which consists of the following iterative steps:

Step 1. Determination of the domain and scope of the ontology
Step 2. Reuse of existing ontologies
Step 3. Enumeration of important terms
Step 4. Definition of the classes and the class hierarchy
Step 5. Definition of the properties
Step 6. Creation of instances.

In literature, the determination of the domain and scope of the ontology can be
documented in a template-based report called “Ontology Requirements Specification
Document” (ORSD) (Suárez-Figueroa, Gómez-Pérez, and Villazón-Terrazas 2009). This
document allows the systematic specification of “why the ontology is being built”, “what its
intended uses are”, “who the end-users are”, and “which requirements the ontology should
fulfil”. In particular, the ORSD report contains the following fields:

1. Purpose: the main general goal of the ontology (i.e. how the ontology will be used in
V4Design)

2. Scope: the general coverage and the degree of detail of the ontology
3. Implementation language: the formal language of the ontology
4. Intended end-users: the intended end-users expected for the ontology
5. Intended uses: the intended uses expected for the ontology
6. Ontology requirements

a. Non-functional requirements: the general requirements or aspects that the ontology
should fulfil, including optional properties for each requirement

b. Functional requirements: the content specific requirements that the ontology should
fulfil in the form of groups of competency questions and their answers, including
optional priorities for each group and for each competency questions

7. Pre- Glossary of terms
a. Terms from competency questions: the list of items included in the competency

questions and their frequencies
b. Terms from answers: the list of terms included in the answers and their frequencies
c. Objects: the list of objects included in the competency questions and their answers

Before presenting the V4Design ORSD (section 4), we outline the WP5 relevant application
context within which the V4Design ontology is deployed (section 3).

D5.1 – V3.0

Page 12

3 USER REQUIREMENTS RELEVANT TO ONTOLOGIES & REASONING

This section presents the application context relevant to WP5, describing relevant user
requirements that drive the development of the V4Design modelling and reasoning
framework. To this end, we have investigated the description of the context and the users
for each scenario, as well as the requirements that have been presented in “D7.2: Use cases,
requirements and evaluation plan”. These requirements will be translated into technical
requirement in “D6.2: Technical requirements and architecture”. Table 1 presents the user
requirements that are relevant to the WP5 representation and reasoning framework, briefly
describing the main functionalities and services that need to be supported.

User
Requirement

ID (D7.2)
Description WP5 Relevance / Dependency

UR_2
As an Architect I want to be able to
retrieve 3D-Models

 Provide the annotation models
(ontologies) to represent and
integrate analysis results from
other modules

 Support searching functionality
and interface over the KB with
the collected metadata

UR_3
As an Architect I want to be able to
retrieve high and reduced
resolution textures

 Capture metadata about the
texture resolution

UR_10
As a user I want further details
about the acquired footage -
image/ video (semantic data/ tags)

 Capture metadata and tags
coming from building and object
localisation, aesthetics, text
analysis, reasoning

UR_12
As a user I want further details
about the extracted data quality

 Capture metadata about quality
of assets

UR_15
As a user I want further details
about geo-location and date/ time
of scan

 Support the annotation of geo-
location and date information

UR_16
As a user I want further details
about the author and copyrights of
the asset

 Support the annotation of
authors and copyright info

UR_18
As a user I want further details
about visible colours in the asset

 Support the annotation of visible
colours

UR_20
As a user I want augmented data of
the acquired 3D model (semantic
data/ tags)

 Capture metadata and tags
coming from building and object
localisation, aesthetics, text
analysis, reasoning

D5.1 – V3.0

Page 13

UR_21
As a user I want a description of
the acquired 3D model

 Support the annotation of assets
with results from text generation

UR_22
As a user I want related Wikipedia
articles to the acquired 3D model

 Ability to associate assets with
relevant external Web Pages

UR_23
As a user I want summarizations of
textual content related to the 3D
model

 Support the annotation of assets
with results from text generation

UR_30

As an Architect I want UIX: 3D-
gallery
i.e. a distraction free interface with
rendered preview thumbnails

 Ability to associate assets with
preview thumbnails

UR_35
As an Architect I want UIX: Search
by semantic tags (keywords)

 Support search functionality and
interface over the KB with the
collected metadata

UR_37

As an Architect I want UIX: Detailed
search by features:

- Quality (3D model/ texture),
Footage features, augmented data

 Support the annotation of assets
with relevant metadata

UR_41
As an Architect I want texture and
material recognition that might
appear in images and videos.

 Ability to annotate textures and
materials

UR_50

As a user I would like to have
access to lists of 3D models, but
also find contextual information,
other assets and related work

 Support searching functionality
and interface over the KB with
the collected metadata

 Support the linking of relevant
assets

UR_55

As a content provider I want clear
and transparent labelling of the
reuse rights and copyright status of
every item in the V4Design
platform so as to enable better
communication and IP protection
to content providers.

 Support the annotation of assets
with reuse rights and copyright
information

UR_57

As a game designer I want to get
information about the assets

- Textual and semantic data about
the 3D assets
- Textual summaries describing the
3D models

 Support the annotation of assets
with textual descriptions and
summaries

Table 1: User requirements relevant to WP5 representation and reasoning framework

D5.1 – V3.0

Page 14

4 ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT

This section presents the ORSD which provides the specification of the V4Design ontological
framework. The ORSD may be further elaborated and extended as the system functionalities
will evolve to take into account hidden and unrevealed aspects that are not covered by the
current ontology requirements.

V4Design ORSD

1 Purpose

 The purpose of the V4Design representation framework is to provide the
ontological structures and vocabularies (ontologies) to capture the results of the
V4Design analysis modules in a reusable and interoperable manner. To this end,
the ontological framework will provide the annotation model needed in order to
support data modelling, integration and reasoning over the distilled information.
These include:

 Constructs for capturing metadata of different resources, such as
aesthetics, recognised buildings and objects, named entities and concepts,
etc.

 A structured model and format to enable annotations and assertions to be
defined, shared and reused across both within the V4Design application
context but also within different hardware and software platforms.

2 Scope

 The V4Design ontology has to formally capture:

 Aesthetics extraction-related information derived from the analysis of
visual content

 Building/object localisation-related information derived from the spatio-
temporal analysis of visual content

 3D reconstruction-related information derived from the multiple-view
reconstruction analysis of visual content

 Object-related information derived by the further enrichment of 3D
models with additional linked data towards textual and visual analysis

 Textual-related annotations that are derived by text analysis and
generation.

A key design choice underpinning the engineering of the V4Design ontologies is
the adherence to a pattern-based approach, so as to capitalise on a modular,
extensible and interoperable framework for expressing annotations and achieve a
better degree of knowledge sharing, reuse and interoperability.

3 Implementation Language

 The ontology will be implemented in OWL 2 (Grau et al. 2008), the officially
recommended language by W3C for knowledge representation in the Semantic
Web.

4 Intended End-Users

D5.1 – V3.0

Page 15

 The V4Design system considers different types of end users depending on the
application context, who will interact with the generated knowledge through
authoring tools:

 PUC1: Architectural design, related to existing or historical buildings and
sites and their environments

Architects and designers: Architects and designers who want to reconstruct
(design/refurbish/extend) the surrounding landscape and the various spatial
elements that articulate it.

 PUC2: Architectural design, related to artworks, historic or stylistic elements

Architects, designers and artists: Architects, designers and artists who want to
reinterpret key aspects of artworks and produce designs and objects (e.g.
furniture collections, decorative objects, lighting accessories, etc.) that are
original but at the same time stylistic and historically charged.

 PUC3: Design of virtual environments, related to TV series and VR video
games architectural design, artworks, historic or stylistic elements

Content providers: Content providers who want to provide a more immersive
experience to its audiences by developing immersive environments and 3D
assets of the objects from their video archives.

 PUC4: Design of virtual environments related to actual news for VR (re) living
the date

Content providers: Content providers who want to develop interactive and
immersive documentaries using the existing footage they have from various
news and locations.

5 Ontology Requirements

 Non-functional requirements

 NFR1. The ontology should adopt available standards whenever possible and
reuse existing ontologies and vocabularies

 Functional requirements: Groups of competency questions

 The list of Competency Questions (CQ) below has been derived by studying the
Pilot Use Case scenarios and user requirements. The questions have been also
elicited through the direct interaction with technical partners. To this end, a
simulation example has been carried out in order to collect additional technical
and user-related requirements that drive the development of the annotation
models (see Section 7).

As described in the Data Management Plan (D1.2), there are different categories
of data. Similarly, the list of CQ contains questions which correspond to these
different types of data.

Visual content
3D Models

D5.1 – V3.0

Page 16

CQ1 Which is the identifier of the 3D model?
CQ2 Which is the title of the 3D model?
CQ3 Which is the description and/or summary of the 3D model?
CQ4 Which is the creation date of the 3D model?
CQ5 Who is the creator of the 3D model?
CQ6 Which is the historic period/style of the asset depicted by the 3D object?
CQ7 Which is the artist of the asset depicted by the 3D object?
CQ8 Which is the object type of the asset depicted by the 3D object?
CQ9 Which is the building type of the asset depicted by the 3D object?
CQ10 Which is the material/texture of the asset depicted by the 3D object (e.g.,

marble, stone, brown, seamless, architecture)?
CQ11 Which is the construction date of the asset depicted by the 3D model?
CQ12 Which is the location (e.g., coordinates) of the asset depicted by the 3D

model?
CQ13 Which is the images from which the 3D model has been reconstructed?
CQ14 Which is the point cloud associated with this 3D model?
CQ15 Which is the identifier of the thumbnail of the point cloud?
CQ16 Which is the mesh associated with this 3D model?
CQ17 Which is the identifier of the thumbnail of the 3D reconstructed mesh?
CQ18 Which is the licence of the visual content from which the 3D model has

been reconstructed?
CQ19 Which are the 3D models derived from the same visual content?
CQ20 Which are the relevant 3D models in terms of artist, period/style, texture,

building/object type?
CQ21 Which textual content (e.g., posts, captions/descriptions) is related to this

3D model?
CQ22 For what kind of application is the 3D model suitable (e.g. low performance

mobile applications or high end productions)?
CQ23 For what kind of application is the mesh suitable?
CQ24 Is this 3D model suitable for a top view mobile or a real size virtual

environment?
CQ25 What is the file size of the 3D model?
CQ26 What is the source format of the 3D model (e.g., .obj, .fbx)?
CQ27 Which are the dimensions (real size) and the scale of the original asset

depicted by the 3D model?
CQ28 What is the thumbnail file size of the point cloud?
CQ29 What is the thumbnail file size of the 3D reconstructed mesh?
CQ30 Which is the number of points for the point cloud associated to this 3D

model?
CQ31 Which is the number of quads of the mesh associated to this 3D model?
CQ32 Which is the number of triangles of the mesh associated to this 3D model?
CQ33 Which is the number of polygons of the mesh associated to this 3D model?
CQ34 Which is the number of converted polygons to triangles of the mesh

associated to this 3D model?
CQ35 Which is the number of vertices of the mesh associated to this 3D model?

D5.1 – V3.0

Page 17

Textures

CQ36 Which is the identifier of the texture?
CQ37 Which is the material of the texture?
CQ38 Which is the map of the texture?

Video from V4Design content providers and external sources

CQ39 Which is the identifier of the video?
CQ40 Which is the title of the video?
CQ41 Which is the description of the video?
CQ42 Which is the URL of the video?
CQ43 Which the URL of the thumbnail of the video?
CQ44 Which is the provider/creator/producer of the video?
CQ45 Which is the Web resource from which the video is retrieved?
CQ46 Which are the tags assigned to the video?
CQ47 Which is the EDM ID associated with the specific video?
CQ48 Which is the licence of the video?
CQ49 What is the file size of the video?
CQ50 What is the file type of the video?
CQ51 What is the video length (e.g., 90 seconds)?
CQ52 How many frames per second does the video have?
CQ53 What are the video dimensions (e.g. 720 pixels x 576 pixels)?
CQ54 What is bit-rate (kbps) of the video?
CQ55 Which is the file with associated metadata?

Images from V4Design content providers and external sources (Flickr, Wikipedia,
etc.)

CQ56 Which is the identifier of the image?
CQ57 Which is the title of the image?
CQ58 Which is the caption/description of the image?
CQ59 Which is the URL of the image?
CQ60 Which the URL of the thumbnail of the image?
CQ61 Which is the provider/creator/producer of the image?
CQ62 Which is the Web resource from which the image is retrieved?
CQ63 Which are the tags assigned to the image?
CQ64 Which is the EDM ID associated with the specific image?
CQ65 Which is the licence of the image?
CQ66 What is the file size of the image?
CQ67 What is the file type of the image?
CQ68 What is the resolution of the image?

Textual Content
Captions/descriptions associated with a visual content

CQ69 Which is the identifier of the caption/description?
CQ70 Which is the visual content (image/video) associated with the specific

caption/description?

D5.1 – V3.0

Page 18

CQ71 Which is the Web resource from which the caption/description is
retrieved?

CQ72 Which is the licence of this textual content?

Textual descriptions not directly associated with a specific visual content (e.g.,
Wikipedia pages, news and magazine articles)

CQ73 Which is the identifier of the text?
CQ74 Which is the Web resource from which the text is retrieved?
CQ75 Which is the licence of this textual content?
CQ76 Which is the visual content (image/video) associated with the specific

caption/description?

Aesthetics

CQ77 In which image did we perform aesthetics extraction?
CQ78 Who is the artist of the depicted artwork in the image?
CQ79 What is the style/period of the depicted artwork in the image?

Building/Object Localisation
CQ80 What is the id of the mask?
CQ81 What is the file size of the created mask?
CQ82 What is the file type of the created mask (.jpeg, .png, etc.)?
CQ83 What is the resolution of the created mask?

Building localisation

CQ84 In which image did we perform building localisation?
CQ85 In which part of the image did we locate a building?
CQ86 What type of building is depicted in the specific part of the image?
CQ87 What is the mark we crated based on this building?

Object localisation

CQ88 In which image did we perform object localisation?
CQ89 In which part of the image did we locate an object?
CQ90 What type of object is depicted in the specific part of the image?
CQ91 What is the mark we created based on this object?

Metadata Annotations
CQ92 Which component provided the annotations?
CQ93 What is the timestamp of the annotations?

The competency questions cover a very exhaustive list of aspects relevant to the V4Design
domain. Though the initial set of V4Design ontologies will not cover this extended list and
depth of detail, they provide the modular structures that will enable the future extensibility
of the model.

D5.1 – V3.0

Page 19

5 STATE OF THE ART

This section provides an overview on the relevant state of the art with respect to knowledge
representation languages as well as already existing ontologies addressing project-relevant
fields. More specifically, we present the basics of Description Logic (DL) languages (Baader et
al. 2003), on which the official W3C recommendation for creating and sharing ontologies in
the Web (OWL 2) is grounded, the different OWL 2 species, as well as relevant rule-based
languages. We then provide a briefly review on the representative ontologies that have been
proposed in the literature for modelling core aspects relevant to the V4Design application
domain that fall into WP5’s modelling requirements.

5.1 Web Ontology Language

In the literature, ontologies have been widely used as an effective way for modelling domain
information because they can represent and organize information, context and relationships
more accurately. In addition, they offer easy expandability by merging, expanding and
combining parts of existing ontologies into new ones.

Ontologies are models used to capture knowledge about some domain of interest. Formally
speaking, ontologies are explicit formal specifications of shared conceptualizations (Gruber
1993; Studer, Benjamins, and Fensel 1998). They represent abstract views of the world
including the objects, concepts, and other entities that are assumed to exist in some area of
interest, their properties and the relationships that hold among them. Their expressivity and
level of formalisation depend on the knowledge representation language used.

Within the Semantic Web, which is an extension of the current Web that aims to establish a
common framework for sharing and reusing data across heterogeneous sources, ontologies
play a key role. The Semantic Web vision is to make the semantics of web resources explicit
by attaching to them metadata that describe meaning in a formal, machine-understandable
way. In this effort, the Web Ontology Language (OWL) (Deborah L. McGuinness 2004) has
emerged as the official W3C recommendation for creating and sharing ontologies on the
Web. In the rest of this section, we present the basics of Description Logic (DL) languages, on
which OWL semantics are grounded, the different OWL species, as well as relevant rule-
based languages.

5.1.1 DL Reasoning

Description Logics (DLs) (Baader et al. 2003) are a family of knowledge representation
formalisms characterised by logically grounded semantics and well-defined reasoning
services. The main building blocks are concepts representing sets of objects (e.g. Person),
roles representing relationships between objects (e.g. worksIn), and individuals
representing specific objects (e.g., Alice). Starting from atomic concepts, such as Person,
arbitrary complex concepts can be described through a rich set of constructors that define

the conditions on concept membership. For example, the concept hasFriend.Person

describes those objects that are related through the hasFriend role with an object from the
concept Person; intuitively, this corresponds to all those individuals that are friends with at
least one person. A DL knowledge base K typically consists of a TBox T (terminological
knowledge) and an ABox A (assertional knowledge). The TBox contains axioms that capture
the possible ways in which objects of a domain can be associated. For example, the TBox

D5.1 – V3.0

Page 20

axiom Dog Animal asserts that all objects that belong to the concept Dog, are members
of the concept Animal too. The ABox contains axioms that describe the real world entities
through concept and role assertions. For example, Dog(Jack) and
isLocated(Jack,kitchen) express that Jack is a dog and he is located in the kitchen.
Table 2 summarises the set of terminological and assertional axioms.

Name Syntax Semantics

Concept inclusion C D C  D

Concept equality C ≡ D C = D

Role Equality R ≡ S R=S

Role inclusion R S R
 S

Concept assertion C(α) α ∈ C

Role assertion R(α,b) (α, b) ∈ R

Table 2: Terminological and assertional axioms

5.1.2 DL reasoning services

DLs come with a set of powerful reasoning services, for which efficient, sound and complete
reasoning algorithms with well understood computational properties are available. Example
state-of-the-art implementations include Pellet (Sirin et al. 2007) Racer (Haarslev and Möller
2003), Fact++ (Tsarkov and Horrocks 2006) and Hermit (Glimm et al. 2014).

Assuming a DL knowledge base K = (T, A), typical reasoning services include:

 Subsumption: A concept C is subsumed by D in T (written T ⊨ C D), iff C  D for all
interpretations .

 Equivalence: Two concepts C and D are equivalent in T (written T ⊨ C ≡ D) iff C  D
and D

 C for all interpretations .
 Disjoint: A concept C is disjoint to a concept D in T iff in every interpretation  it holds

that C ≠.
 Consistency: The ABox A is consistent w.r.t. T iff if there is an interpretation that is a

model of both A and T.
 Instance checking: The individual α is an instance of C (w.r.t. K) (written K ⊨ C(α)) iff

α ∈ C holds for all interpretations  of K.
 Realisation: The realisation of an instance α w.r.t. to K includes finding the most

specific concepts C for which a ∈ C holds for all interpretations  of K.

Hence, through subsumption one can derive the implicit taxonomic relations among the
concepts of a terminology. For example, given the axiom OccupiedRoom ≡ Room ⊓

contains.Person, one can infer that Room subsumes OccupiedRoom.

Satisfiability and consistency checking are useful to determine whether a knowledge base is
meaningful at all. Satisfiability checking enables the identification of concepts for which it is
impossible to have members under any interpretation (for example, an unsatisfiable
concept, though trivial, is OccupiedRoom ⊓ OccupiedRoom). Consistency checking
enables the identification whether the set of assertions comprising the knowledge base is
admissible with respect to the terminological axioms. For example if EmptyRoom and

D5.1 – V3.0

Page 21

OccupiedRoom are asserted as disjoint concepts, then the presence of both
OccupiedRoom(kitchen) and EmptyRoom(kitchen) leads to inconsistency.

Instance checking denotes the task of finding whether a specific individual is an instance of a
given concept. Realisation of an individual, a more generic form of instance checking, returns
all (most specific) concepts from the knowledge base that a given individual is an instance of.
Its dual is the retrieval problem that given a specific concept C, it returns all individuals that
belong to this concept. This reasoning service is the central to realise the task of recognition
of situation types.

Falling under the classical logics paradigm, reasoning in DLs adopts the open-world
assumption. Intuitively, if a fact α holds only in a subset of the models of the knowledge base

KB, then we can conclude neither KB⊨ α nor KB ⊨ α. For example, if the only available
knowledge regarding the residents of a house is the assertion livesIn(Alice,house), we
cannot deduce based on it alone that no one else lives in the house. In contrast, formalisms
adhering to the closed-world assumption make the common-sense conjecture that all
relevant information is explicitly known, so all unprovable facts should be assumed not to
hold. In our example, this amounts to concluding that Alice is the sole resident of this house.

Hence, closed-world reasoning can be intuitively understood as reasoning where from KB ⊨

α, one concludes KB ⊨ α. Such kind reasoning should not be confused however with closed
domain reasoning, which involves reasoning only over explicitly known individuals.

5.1.3 OWL and OWL 2

The OWL is a knowledge representation language widely used within the Semantic Web
community for creating ontologies. The design of OWL and particularly the formalisation of
the semantics and the choice of language constructors have been strongly influenced by DLs.
OWL comes in three dialects of increasing expressive power: OWL Lite, OWL DL and OWL
Full. OWF Full is the most expressive of the three: it neither imposes any constraints on the
use of OWL constructs, nor lifts the distinction between instances (individuals), properties
(roles) and classes (concepts). This high degree of expressiveness comes however at a price,
namely the loss of decidability that makes the language difficult to implement. As a result,
focus has been placed on the two decidable dialects, and particularly on OWL DL, which is
the more expressive of the two.

Despite the rich primitives provided for expressing concepts, OWL DL has often proven
insufficient to address the needs of practical applications. This limitation amounts to the DLs
style model theory used to formalise its semantics, and particularly the tree model property
(Vardi 1996) conditioning DLs decidability. As a consequence, OWL can model only domains
where objects are connected in a tree-like manner. This constraint is quite restrictive for
many real-world applications, including the ambient intelligence domain, which requires
modelling general relational structures.

Responding to this limitation and to other drawbacks that have been identified concerning
the use of OWL in different application contexts throughout the years, the W3C working
group produced OWL 2 (Grau et al. 2008). OWL 2 is a revised extension of OWL, now
commonly referred to as OWL 1. It extends OWL 1 with qualified cardinality restrictions;
hence one can assert for example that a social activity is an activity that has more than one
actor: SocialActivity Activity ≥ 2hasParticipant.Person.

D5.1 – V3.0

Page 22

Another prominent OWL 2 feature is the extended relational expressivity that is provided
through the introduction of complex property inclusion axioms (property chains). To
maintain decidability, a regularity restriction is imposed on such axioms that disallow the
definition of properties in a cyclic way. Hence, one can assert the inclusion axiom
locatedIn ○ containedIn locatedIn making it possible to infer that if a person is
located for example in the bedroom of her house, then she is located in her house as well;
however, it is not allowed to use both the aforementioned axiom and the axiom
containedIn ○ locatedIn containedIn as this leads to a cyclic dependency. Three
profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL, trade portions of expressive power for
efficiency of reasoning targeting different application scenarios.

5.1.4 Rules

To achieve decidability, DLs, and hence OWL, trade some expressiveness for efficiency of
reasoning. The tree-model property is one such example. It conditions the tree-shape
structure of models, ensuring decidability, but at the same time it severely restricts the way
variables and quantifiers can be used, dictating that a quantified variable must occur in a
property predicate along with the free variable. As a result, it is not possible to describe
classes whose instances are related to an anonymous individual through different property
paths. To leverage OWL’s limited relational expressivity and to overcome modelling
shortcomings that OWL alone would be insufficient to address, a significant body of research
has been devoted to the integration of OWL with rules.

A proposal towards this direction is the Semantic Web Rule Language (SWRL) (Horrocks et al.
2004), in which rules are interpreted under the classical first order logic semantics. Allowing
concept and role predicates to occur in the head and the body of a rule without any
restrictions, SWRL maximises the interaction between the OWL and rule components, but at
the same time renders the combination undecidable. To regain decidability, several
proposals have explored syntactic restrictions on rules (Motik, Sattler, and Studer 2005;
Rosati 2006) as well as their expressive intersection of Description Logic Programs (DLP)
(Grosof et al. 2003). The DL-safe rules introduced for example in (Motik, Sattler, and Studer
2005) impose that rule semantics apply only over known individuals. It is worth noting that
in practice DL reasoners providing support for SWRL actually implement a subset of SWRL
based on this notion of DL-safety.

Taking a different perspective, a number of approaches have investigated the combination
of ontologies and rules based on mappings of a subset of the ontology semantics on rule
engines. For instance, (ter Horst 2004) defines the pD* semantics as a weakened variant of
OWL Full, e.g., classes can be also instances, and they are extended to apply to a larger
subset of the OWL vocabulary, using 23 entailments and 2 inconsistency rules. Inspired by
the pD* entailments and DLP, the semantics of the OWL 2 RL profile is realised as a partial
axiomatisation of the OWL 2 semantics in the form of first-order implications, known as OWL
2 RL/RDF rules. User-defined rules on top of the ontology allow expressing richer semantic
relations that lie beyond OWL’s expressive capabilities, and couple ontological and rule
knowledge.

SPARQL (Harris and Seaborne 2013) is a declarative language recommended by the W3C for
extracting and updating information in RDF graphs. It is an expressive language that allows
the description of quite complex relations among entities. The semantics and complexity of

D5.1 – V3.0

Page 23

the SPARQL query language have been fairly studied theoretically, showing that SPARQL
algebra has the same expressive power as relational algebra (Perez, Arenas, and Gutierrez
2006) (He et al. 2004). Although SPARQL is mostly known as a query language for RDF, by
using the CONSTRUCT graph pattern, it is able to define SPARQL rules that can create new RDF
data, combining existing RDF graphs into larger ones. Such rules are defined in the
interpretation layer in terms of a CONSTRUCT and a WHERE clause: the former defines the
graph patterns, i.e. the set of triple patterns that should be added to the underlying RDF
graph upon the successful pattern matching of the graphs in the WHERE clause. The SPARQL
Inferencing Notation (SPIN) (Knublauch, Hendler, and Idehen 2011) constitutes an effort to
ease the definition and execution of SPARQL rules on top of RDF graphs. In SPIN, SPARQL
queries can be stored as RDF triples together with any RDF domain model, enabling the
linkage of RDF resources with the associated SPARQL queries, as well as sharing and reuse of
SPARQL queries. SPIN supports the definition of SPARQL inference rules that can be used to
derive new RDF statements from existing ones through iterative rule application.

5.2 Ontologies relevant to the V4Design domain

This section briefly reviews state-of-the-art ontologies that can be used for modelling core
aspects relevant to the V4Design application domain. According to the V4Design ontological
requirements, we have spit the relevant ontologies into four sections. First, we review
ontologies that can be used to model events and observations (in the sense that V4Design
module outputs can be considered as events), then we continue with general purpose
ontologies that provide the conceptual background for modelling generic content and
context. We then present ontologies that have been mainly used to capture multimedia
information and finally existing patterns that have been proposed to define annotation
models.

It should be noted that the purpose of this section is not to provide a complete list of
ontologies relevant to the V4Design domain, but to elaborate on design principles that have
been followed in the literature for defining annotations and conceptual models.

Figure 3: The event correlation pattern in Event-Mode-F

D5.1 – V3.0

Page 24

5.2.1 Observations and events

Event-Model-F

Event-Model-F (Scherp et al. 2009) defines an expressive model for capturing and
representing occurrences in the real world. It is based on DUL, following the descriptions and
situations ontology design pattern (DnS) (Gangemi and Mika 2003) for modelling aspects of
events, such as object participation, mereological, causal, and correlative relationships, and
different interpretations of the same event (by reifying events in order to describe n-ary
relations) introducing six ontology design patterns.

DnS enhances DOLCE’s descriptive characteristics even further allowing the context-sensitive
“redescriptions” of the types and relations postulated by other given ontologies or ground
vocabularies. The current OWL encoding of DnS assumes DOLCE as a ground top-level
vocabulary. The basic implementation of the DnS pattern in DUL allows the relation of
situations (dul:Situation) and descriptions (dul:Description) with domain events
(dul:Event), concepts (dul:EventType), objects and participants. More specifically, a
situation describes the entities of a context, e.g. the events and objects that are involved,
and satisfies (dul:satisfies) a description. The description in turn defines (dul:defines)
concepts that classify (dul:classifies) the entities of the situation, describing the way
they should be interpreted. Event-Model-F implements a number of instantiations on top of
the DnS pattern to describe relations among events, such as causality and correlation. For
example, Event-Model-F (emf namespace) allows the association of composite events with
their sub-events through descriptions that use the concepts emf:Composite
dul:EventType and emf:Component dul:EventType. Figure 3 depicts the event
correlation pattern of Event-Model-F.

Simple Event Model

The Simple Event Model (SEM) (Van Hage et al. 2011) is an effort to define an ontology
model for events without strong semantic constraints. This decision is justified by the open

Figure 4: Simple Event Model

D5.1 – V3.0

Page 25

nature of the Web and the need to model different (even conflicting) views of the same
event. The lack, however, of strong semantic constraints, such as functional properties,
disjoint classes and cardinality restrictions, hampers the ability to automatically validate and
resolve model inconsistencies using formal inference mechanisms. Therefore, SEM is
characterised by a trade-off between model reusability and automated reasoning and
validation capabilities. Figure 4 presents the main concepts of this ontology.

5.2.2 Content and context

PROV Ontology (PROV-O)

The PROV Ontology (PROV-O) (Lebo, Sahoo, and McGuinness 2013) provides a set of classes,
properties, and restrictions to represent the provenance information associated with data
published (Figure 5). The core concepts of the conceptual model revolves around the notion
of entity, a digital, physical or other thing; activity, an action generating or manipulating
entities; and agent, the responsible person/institution/administration for an activity taking
place as it did. The PROV Ontology classes and properties are defined such that not only they
can be used directly to represent provenance information, but they can also be specialized
for modelling application-specific provenance details in a variety of domains.

PAV (Provenance, Authoring and Versioning)

PAV (Ciccarese et al. 2013) extends the PROV-O and specifies Provenance, Authoring and
Versioning information. Compared to PROV-O, it focuses on the provenance of a digital
resource in terms of its relationships with other digital resources and agents involved in their
creation, authoring and manipulation, and it abstracts away from the description of the
activities (process) that manipulate and transform the digital resources.

More specifically, the PAV ontology (Figure 6) provides properties for tracking intellectual
property information. It distinguishes between authors, curators, and contributors. PAV also
distinguishes between retrieving a resource ‘as is’, importing a resource through a data
transformation and accessing a resource. The latter is useful when resources such as
webpages are accessed but not cached or imported into the system. PAV also allows us to
specify the agent that performed the task and the time when the task was performed. Last,
versioning properties are provided to link a version of the resource with the previous one of

Figure 5: The core concepts of the PROV ontology

D5.1 – V3.0

Page 26

the same lineage and indicate an artifact as a derivation of another, not necessarily of the
same lineage.

Dublin Core Metadata Initiative (DCMI)

The Dublin Core metadata standard2 is a simple yet effective set of 15 elements (Figure 7)
for describing a wide range of networked resources on the Internet. Although the Dublin
Core favours document-like objects, it can be applied to other resources as well. Its
suitability for use with particular non-document resources depends to some extent on how
closely their metadata resemble typical document metadata and also what purpose the
metadata is intended to serve. The following graph re-expresses unqualified DC in HTML in
RDF in a schematic way.

2
 http://dublincore.org/documents/dces/

Figure 6: Example illustrating authoring with PAV

Figure 7: Core DCMI metadata

http://dublincore.org/documents/dces/

D5.1 – V3.0

Page 27

Semantically-Interlinked Online Communities (SIOC)

The SIOC ontology (Passant et al. 2010) has become a popular metadata standard providing
the main concepts and properties required to describe information from online communities
(e.g., message boards, wikis, weblogs, etc.) on the Semantic Web (Breslin et al. 2005). It also
provides methods for interconnecting discussion methods such as blogs, forums and mailing
lists to each other (Figure 8).

Simple Knowledge Scheme (SKOS)

The SKOS Core Vocabulary (Miles 2006) is a model for expressing the basic structure and
content of concept schemes. The term “concept scheme” is used to describe “a set of
concepts, optionally including semantic relationships between those concepts”. These
concept schemes might include thesauri, classification schemes, subject heading lists,
taxonomies, terminologies, glossaries and other types of controlled vocabulary.

For example, most items of a thesaurus could be mapped to a series of skos:Concepts
containing preferred labels (skos:prefLabel) and non-preferred labels (skos:altLabel). It
may also contain various broader terms (skos:broader) or related terms (skos:related),
and so forth (Figure 9).

Figure 9: SKOS example

Figure 8: Example illustrating authoring with SIOC

https://en.wikipedia.org/wiki/Blog

D5.1 – V3.0

Page 28

5.2.3 Multimedia content

Ontology for Media Resources

The Ontology for Media Resources 1.03 was developed by the W3C Media Annotations
Working Group (MAWG) with the purpose to identify a minimum set of core properties
necessary and sufficient to describe and retrieve information about media resources (video,
audio, images) on the Web. The ontology consists of 20 descriptive properties (Identification:
identifier, title, language and locator; Creation: contributor(s), creator, date and location;
Content description: description, keyword, genre and ratings; Relational: relation and
collection; Rights: copyright and policy; Distribution: publisher and target audience;
Fragment: fragment and namedFragment) and eight technical properties (such as frame size,
duration, compression, format, etc.). The descriptive properties are media agnostic and
apply to descriptions of multimedia works (such as movies) that are not specific to an
instantiation (an AVI file, for example), while the technical properties are used when
describing a particular instantiation of the content. An overview of the core concepts of the
Ontology for Media Resources is depicted in Figure 10 (Stegmaier et al. 2013).

Common Shape Ontology

The Common Shape Ontology conceptualizes knowledge about “digital shape” resources,
ranging from 2D/3D images to videos, 3D models and 3D Animations (Vasilakis et al. 2007).
The ontology lies at an intermediate level between top ontologies and domain ontologies
being specific and detailed enough to be used and instantiated directly, but also general
enough to constitute the foundation for domain- specific ontologies. The most important
concept is the ShapeRepresentation class, whose instances are the actual digital shapes.
The ontology consists of properties describing the creator, the owner, the contact and the
uploader of a digital shape. Since the granularity of these roles is often not well defined, the
range of the above relations is PersonInfo and InstitutionInfo, which in turn can be
mutually linked by the relation worksFor. Another way to look at a digital shape is to
consider it as a file. For this reason each shape can be related to a FileInfo instance, in

3
 http://www.w3.org/TR/mediaont-10

Figure 10: Ontology for Media Resources core model

http://www.w3.org/TR/mediaont-10

D5.1 – V3.0

Page 29

which the information about the name, the size, the format and the URL of the file are
stored. An overview of the Common Shape Ontology structure, where only the most
important concepts are shown, is given in Figure 11.

3D Modelling Ontology

Both the MPEG-7 and the X3D standard4 define their terms in a semi-structured XML
Schema-based (XSD) vocabulary, which is machine-processable, but not machine-
interpretable (L. F. Sikos 2017). This limitation can be addressed by using Semantic Web
standards, such as RDF, RDF Schema and OWL (L.F. Sikos 2015), so that the structured
representation of the corresponding concepts becomes machine-interpretable by linking
them to their formal definitions and other, related concepts from the Linked Open Data
(LOD) Cloud. For this reason, several attempts have been made to map the XML Schema of
MPEG-7 to RDFS and OWL (Leslie F Sikos and Powers 2015) and the XML Schema of X3D to
OWL (OntologyX3D (Kalogerakis, Christodoulakis, and Moumoutzis 2006), and more
recently, the 3D Modelling Ontology (3DMO)5, which not only maps the X3D vocabulary to
OWL, but also extends it with important terms from the 3D modelling industry.

To date, the 3D Modelling Ontology is the most expressive 3D ontology, which is defined in
the SROIQ(D) description logic. It utilizes the DL syntax and semantics to define 3D modelling
concepts, such as geometry, material, texture, environment, 3D objects, and polygons, in a
taxonomic structure, together with roles (in a hierarchy), individuals and relations defined
with Schema.org, Dublin Core, and FOAF concepts.

5.3 Annotation models

Annotating, the act of creating associations between distinct pieces of information, is a
pervasive activity online in many guises. Annotations are typically used to convey
information about a resource or associations between resources. Simple examples include a

4
 http://www.web3d.org/x3d/what-x3d/

5
 http://3dontology.org

Figure 11: Common Shape Ontology structure

http://www.web3d.org/x3d/what-x3d/
http://3dontology.org/

D5.1 – V3.0

Page 30

comment or tag on a single web page or image, or a blog post about a news article. In this
section, we present two annotation models, the Web Annotation Data Model and the
Europeana Data Model which have inspired the V4Design annotation model described in
Section 6.1.

5.3.1 Web Annotation Data Model

The Web Annotation Data Model6 specification describes a structured model and format to
enable annotations to be shared and reused across different hardware and software
platforms. This interoperability may be either for sharing with others, or the migration of
private annotations between devices or platforms. The shared annotations must be able to
be integrated into existing collections and reused without loss of significant information.
Common use cases can be modelled in a manner that is simple and convenient, while at the
same time enabling more complex requirements, including linking arbitrary content to a
particular data point or to segments of timed multimedia resources.

The specification provides a specific JSON format for ease of creation and consumption of
annotations based on the conceptual model that accommodates these use cases, and the
vocabulary of terms that represents it. The Web Annotation Vocabulary7 specifies the set of
RDF classes, predicates and named entities that are used by the Web Annotation Data
Model. It also lists recommended terms from other ontologies that are used in the model,
and provides the JSON-LD Context and profile definitions needed to use the Web Annotation
JSON serialization in a Linked Data context.

An annotation is considered to be a set of connected resources, typically including a body
and target, and conveys that the body is related to the target. The exact nature of this
relationship changes according to the intention of the annotation, but the body is most
frequently somehow "about" the target. This perspective results in a basic model with three
parts, depicted in Figure 12. The full model supports additional functionality, enabling
content to be embedded within the annotation, selecting arbitrary segments of resources,
choosing the appropriate representation of a resource and providing styling hints to help
clients render the annotation appropriately. Annotations created by or intended for
machines are also possible, ensuring that the Data Web is not ignored in favour of only
considering the human-oriented Document Web.

6
 https://www.w3.org/TR/annotation-model/

7
 https://www.w3.org/TR/annotation-vocab/

Figure 12: Core Web Annotation Data Model pattern

https://www.w3.org/TR/annotation-model/
https://www.w3.org/TR/annotation-vocab/

D5.1 – V3.0

Page 31

The Web Annotation Data Model does not prescribe a transport protocol for creating,
managing and retrieving annotations. Instead it describes a resource oriented structure and
serialization of that structure that could be carried over many different protocols. Figure 13
depicts an example annotation of an image, using the Web Annotation Data Model.

5.3.2 Europeana Data model

The Europeana Data Model (EDM) (Doerr et al. 2010) has been proposed for structuring the
data that Europeana ingests, manages and publishes. The model is not built on any particular
standard but rather adopts an open and scalable approach that can accommodate the range
and level of details of particular standards such as LIDO for museums, EAD for archives or
METS for digital libraries. Moreover, the model not only supports the level of detail of the
content providers’ metadata but also enables data enrichment from a range of third party
sources.

The rationale behind EDM is that it makes a distinction between the object this structure is
about and the digital representation of the object, which can be accessed over the Web. It
also adheres to the modelling principles of the Semantic Web enabling various fine-grained
models to be attached. This assumption is conceptually in line with the specification of the
Web Annotation Data Model described in the previous section.

In more detail, EDM provides three core classes to enable the representation and accessing
of objects provided to Europeana, together with their digital representations, which is
regarded as one logical whole. In addition, EDM introduces and re-uses metadata properties
to semantically enrich objects and connecting them to other resources while it allows for
different levels of granularity in the descriptions. It also provides support for ingesting the
descriptive metadata submitted by various providers for the same object and representing
new information added by Europeana.

Representing provided data as aggregations

EDM has three core classes of resources:

 edm:ProvidedCHO: captures the “provided cultural heritage object” which can be a
painting, a movie, a music score, a book, etc. and is mapped to a edm:ProvidedCHO
concept acting as an identifier for the “real” object.

 edm:WebResource: refers to the, one or more, accessible digital representations of
this object, some of which will be used as previews, such as the digital picture of a

Figure 13: Example annotation of an image

D5.1 – V3.0

Page 32

painting. This digital representations of the object is mapped to a edm:WebResource
concept.

 ore:Aggregation: denotes the aggregation of the provided object, together with its
digital representations, which represents the result of this provider’s activity

The properties for interconnecting these classes are the following:

 edm:aggegatedCHO, which relates ore:Aggregation with one resource that stands
for the provided object using the edm:aggegatedCHO property and

 edm:hasView, which relates ore:Aggregation with one or more resources that are
digital representations of the provided object, using the edm:hasView property.

Both edm:aggregatedCHO and edm:hasView properties are sub-properties of
ore:aggregates, representing the fact that the aggregation indeed aggregates the "real"
object and its digital views. Figure 14 depicts a high-level view of the core classes and
properties linking them.

Figure 14: Visualization of the three core EDM classes for data providers

EDM enables capturing a description of the “digital environment” of an object submitted to
Europeana, and attaching descriptive information to the various resources that take part in
this environment. To this end, EDM includes a set of “descriptive” and “contextual”
properties that capture the different features of a resource, as well as relate it to the other
entities in its context. These properties can be either introduced as new EDM-related
properties or re-used by existing vocabularies, such as the dc and dcterms properties of
DCMI, which are used to directly link text values to the object.

5.4 Discussion

This section has introduced the basic notions underlying the Semantic Web and provided a
brief overview of key technologies empowering the envisaged knowledge sharing and reuse
across heterogeneous environments. Expressive ontology languages allow the elegant
capture of complex knowledge and its semantics in a formal way, rendering it amenable to
automated reasoning tasks with well-understood computational properties. Rules augment
further the expressive capabilities, by allowing the representation of richer semantic
relationships. In addition, we briefly presented existing ontologies relevant to the V4Design
application domain, focusing on the provided ontology constructs and design patterns. As
such, ontologies for capturing events and observations have been reviewed. Such ontologies
can be used to model analysis results from other modules as observations. In addition,
general purpose ontologies, such as PROV-O, and metadata vocabularies, such as SKOS and

D5.1 – V3.0

Page 33

DCMI, provide useful annotation schemata. In addition, a number of ontologies exist for
annotating multimedia content, such as images, video and 3D models. Finally, two
annotation models have been reviewed that allow the formal annotation of entities with
metadata.

The ontologies reviewed in this section served us as valuable references for distilling the
advantages and disadvantages of alternative modelling solutions and the trade-offs and
restrictions pertinent to different scopes, before making our modelling choices. For example,
for the modelling and formalisation of descriptive information, our choices have been largely
shaped by the DCMI and schema.org vocabularies. In addition, the V4Design annotation
model capitalises on the Web Annotation Data model, as we describe in Section 6.1.

The formalisation has been performed keeping also in mind the need to have an ontology
that will support the planned reasoning tasks in T5.2. Since many of the exact reasoning-
incurring dependencies could not be specified during this phase of ontology building, we
opted for a concise modelling that covers the foundational notions identified through the
competency questions, while in parallel enforcing modularity and separation of concerns so
that extensibility and future ontology updates are facilitated.

D5.1 – V3.0

Page 34

6 V4DESIGN ANNOTATION MODEL AND REASONING FRAMEWORK

6.1 V4Design Annotation Model

In line with the preceding requirement analysis of V4Design application contexts, a number
of ontological constructs have been defined in order to support data modelling, integration
and reasoning over the distilled information. These include:

 Constructs for capturing metadata of different resources, such as aesthetics,
recognised buildings and objects, named entities and concepts, etc.

 A structured model and format to enable annotations and assertions to be defined,
shared and reused across both inside the V4Design application context but also in
different hardware and software platforms.

A key design choice underpinning the engineering of the V4Design models has been the
adherence to a pattern-based approach, so as to capitalise on a modular, extensible and
interoperable framework for expressing annotations and achieve a better degree of
knowledge sharing, reuse and interoperability. In particular, the V4Design annotation
pattern reuses the Web Annotation Data Model whose a brief summary is presented in
Section 5.3.1. It also reuses a number of existing schemata, such as DCMI and schema.org to
inherit general purpose hierarchies and descriptive attributes (see Appendix A.2).

It must be noted that as the modelling and reasoning requirements evolve, as well as the
user requirements and output of component become richer, iterative cycles of assessment
and respective revisions will take place. These will mainly affect the domain models that we
use to capture the various information types generated within V4Design. The pattern-based
approach ensures that the conceptual model for associating resources with annotations will
not be affected by the updated domain models. This is especially important since it allows
incremental and targeted updates to be performed on the underlying vocabularies
(according to the updated requirements), minimising the risk for compatibility errors and the
impact that these changes may have on the platform.

In this section, we present the way the
Web Annotation Data Model is used
to address the V4Design modelling
requirements, associating the media
types that are generated by the
V4Design modules with metadata, we
call views (Figure 15). It should be
mentioned that the annotation model
and underlying ontologies are checked
against the requirements in order to
ensure that they adequately cover the
knowledge that they are expected to capture. As a consequence, formalisation and revision
activities have been carried on iteratively, and will continue for the remaining duration of
the project, as the use cases and requirements evolve. As already mentioned, the separation
of the domain ontologies from the pattern used for attaching metadata to various resources
in the form of views fosters reusability, extensibility and interoperability, minimising the

Figure 15: Core annotation model in V4Design

D5.1 – V3.0

Page 35

effort needed to incorporate updates needed due to updated user and technical
requirements.

6.1.1 V4Design Annotation Classes

V4Design extends the oa:Annotation class, defining 6 domain specific annotations classes
that are depicted in Figure 16. Each of these classes is used as the root annotation resource,
attaching metadata views to media types.

There are four main media types in V4Design, for which WP5 gets analysis results from other

components of the architecture: videos, images (masks, textures), text and 3D models.
Figure 17 depicts the basic hierarchy of media types. The ontology also contains descriptive
properties that capture basic metadata that characterise assets and media types, i.e.
attributes that are not subject to different interpretations and do not derive from analysis,
but they are static. Ids, licence information and timestamps are some examples of such
metadata that the V4Design ontology needs to support. There are already existing
ontologies that provide a common vocabulary for such attributes, such as the Dublin Core
Metadata or the shema.org vocabulary, that V4Design ontology reuses. Figure 17 depicts an
excerpt of the media type ontology.

Each annotation class restricts the values of the oa:hasTarget and oa:hasBody properties.
In other words, it associates the target of the annotation (i.e. the media type), with the
metadata view, i.e. the RDF graph that contains the metadata that have been derived by the

Figure 16: The six annotation classes in V4Design

Figure 17: Ontology for media types

D5.1 – V3.0

Page 36

analysis. In the following, we present the basic structure of the respective annotation
models.

Aesthetics Annotation Class

The initiation of an annotation relevant to aesthetics is performed by defining instances of
the v4d:AestheticsAnnotation class. As depicted in Figure 18, this class restricts the
oa:hasBody property to take as values only instances of the v4:AestheticView class. In
addition, the oa:hasBody property is restricted to take as values only instances of the
v4d:Image media type, since aesthetics are derived only from images.

Object Localisation Annotation Class

The initiation of an annotation relevant to object localisation results is performed by
defining instances of the v4d:ObjectLocalisationAnnotation class. As depicted in Figure
19, this class restricts the oa:hasBody property to take as values only instances of the
v4:LocalisationObjectView class. In addition, the oa:hasBody property is restricted to take
as values only instances of the v4d:Image and v4d:Video media types, since object
localisation is performed over both media types.

Figure 18: Annotation class for aesthetics

Figure 19: Annotation class for object localisation

D5.1 – V3.0

Page 37

Building Localisation Annotation Class

The initiation of an annotation relevant to building localisation is performed by defining
instances of the v4d:BuildingLocalisationAnnotation class. As depicted in Figure 20, this
class restricts the oa:hasBody property to take as values only instances of the
v4:LocalisationBuildingView class. In addition, the oa:hasBody property is restricted to
take as values only instances of the v4d:Image and v4d:Video media types, since object
localisation is performed over both media types.

Text Analysis Annotation Class

The initiation of an annotation relevant to textual analysis is performed by defining instances
of the v4d:TextAnalysisAnnotation class. As depicted in Figure 21, this class restricts the
oa:hasBody property to take as values only instances of the v4:TextAnalysisView class. In
addition, the oa:hasBody property is restricted to take as values only instances of the
v4d:Text media type.

Text Generation Annotation Class

The initiation of an annotation relevant to textual analysis is performed by defining instances
of the v4d:TextGenerationAnnotation class. As depicted in Figure 22, this class restricts the
oa:hasBody property to take as values only instances of the v4:TextGenerationView class.

Figure 20: Annotation class for building localisation

Figure 21: Annotation class for text analysis

D5.1 – V3.0

Page 38

In addition, the oa:hasBody property is restricted to take as values only instances of the
v4d:MediaType class.

3D Model Reconstruction Annotation Class

The initiation of an annotation relevant to the reconstruction of a 3D model is performed by
defining instances of the v4d:3DModelAnnotation class. As depicted in Figure 23, this class
restricts the oa:hasBody property to take as values only instances of the v4:3DModelView
class. In addition, the oa:hasBody property is restricted to take as values only instances of
the v4d:3DModel class.

6.1.2 V4Design Views

In V4Design, views are container classes for annotations that are used in oa:hasBody
property assertions. They are the constructs that capture the actual metadata that the
various V4Design modules generate. An expert of the View graph for all annotation classes
presented so far can be found in Figure 24. It should be noted that in the current version of
the V4Design annotation model, the views contain a very limited number of annotation
properties, in line with the modelling requirements of the operational prototype
(MS2/M12). As we illustrate through a detailed example in Section 7, the current version of
the V4Desing ontological modules is able to effectively capture all the annotation metadata
that the V4Design modules generate. As the analysis modules become more advanced and

Figure 22: Annotation class for text generation

Figure 23: Annotation class for 3D model reconstruction

D5.1 – V3.0

Page 39

Figure 24: Excerpt of the V4Design View graph

provide richer metadata, the V4Design vocabulary will be updated to fully support the
construction of V4Design knowledge graphs.

For each annotation class described in the previous sections, there is a corresponding view
class.

Aesthetics

V4Design aims at the extraction of aesthetics, i.e. the categorisation of the aesthetics of
paintings and images that contain architecture objects and buildings based on their style (i.e.
impressionism, cubism and expressionism), creator and emotion that they evoke to the
viewer and combine them so as to produce/suggest novel textures. Based on the feedback
we obtained from WP3, Table 3 depicts the styles and creators that are currently supported.

Styles

Baroque, Impressionism, Expressionism, Cubism, Rococo, Minimalism, Abstract
Expressionism, Action painting, Analytical Cubism, Art Nouveau, Colour Field
Painting, Contemporary Realism, Early Renaissance, Fauvism, High Renaissance,
Mannerism Late Renaissance, Naive Art Primitivism, New Realism, Northern
Renaissance, Pointillism, Pop Art, Post Impressionism, Realism, Romanticism,
Symbolism, Synthetic Cubism, Ukiyo-e

Creators

Salvador Dali, Vincent Van Gogh, Pablo Picasso, Albrecht Durer, Boris
Kustodiev, Camille Pissarro, Childe Hassam, Claude Monet, Edgar Degas,
Eugene Boudin, Gustave Dore, Ilya Repin, Ivan Aivazovsky, Ivan Shishkin, John
Singer Sargent, Marc Chagall, Martiros Saryan, Nicholas Roerich, Pierre Auguste
Renoir, Pyotr Konchalovsky, Raphael Kirchner, Rembrandt, Paul Cezanne

Table 3: Styles and creators supported by aesthetics extraction

D5.1 – V3.0

Page 40

Two properties have been defined for the creators (v4d:creator) and styles (v4d:style)
whose domain is the v4d:AestheticView. In addition, each one style (v4d:Style) and
creator (v4d:Creator) in Table 3 has been mapped to corresponding lexical resource in the
BabelNet and/or DBpedia semantic network. For example, “Impressionism” is represented
with the resource https://babelnet.org/synset?word=bn:00046175n, while “Salvador Dalí”
with the resource https://babelnet.org/synset?-word=bn:00025060n.

Building and Object Localisation

Spatio-temporal building and object localisation in images and video frames aims to define
their type, i.e. whether the image or video contains a building, object or a painting and then
semantically segment it in a spatio-temporally manner in order to localise the spatial
elements of the buildings (i.e. type of window, door, roof, decoration, facade, etc.) and the
surrounding area. Based on the feedback we obtained from WP4, Table 4 depicts the
building and objects that are currently supported.

Interior
objects

bottle, plate, wine glass, cup, fork, knife, spoon, bowl, chair, couch, potted
plant, bed, mirror, dining table, window, desk, toilet, door, sink, vase

Exterior
objects

person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light,
fire hydrant, street sign, stop sign, parking meter, bench, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe, hat, backpack, umbrella, shoe, eye
glasses, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite,
baseball bat, baseball glove, skateboard, surfboard, tennis racket

Buildings

abbey, alley, amphitheatre, apartment building - outdoor, aqueduct, arcade,
arch, atrium, auditorium, balcony - exterior, balcony - interior, barn, barn door,
basilica, beach house, bistro - outdoor, boathouse, bookstore, booth-indoor,
bow window - indoor, bridge, building facade, bullring, burial chamber, bus
station-indoor, butchers shop, cabin-outdoor, cafeteria, campus, candy store,
castle, catacomb, cathedral-indoor, cathedral-outdoor, cemetery, chalet,
chapel, church-indoor, church-outdoor, clothing store, coffee shop, corral,
corridor, cottage, courthouse, courtyard, dam, department store, diner-
outdoor, dock, doorway-outdoor, downtown, embassy, entrance hall,

Figure 25: Style and Creator classes with example instances

https://babelnet.org/synset?word=bn:00046175n
https://babelnet.org/synset?-word=bn:00025060n

D5.1 – V3.0

Page 41

excavation, fast food restaurant, fire station, fountain, garage-indoor, garage-
outdoor, gas station, gazebo-exterior, general store-outdoor, gift shop,
greenhouse-outdoor, hallway, harbour, hospital, hotel-outdoor, house,
hunting lodge-outdoor, igloo, industrial area, industrial park, inn-outdoor,
jewellery shop, kasbah, library-indoor, library-outdoor, lift bridge, lighthouse,
loading dock, lobby, mansion, manufactures home, market-outdoor,
mausoleum, medina, mezzanine, moat-water, monastery-outdoor, mosque-
outdoor, motel, museum-indoor, museum-outdoor, natural history museum,
oast house, office building, pagoda, palace, parking garage-outdoor, pavilion,
pharmacy, pier, playground, plaza, porch, promenade, pub-indoor, pulpit,
racecourse, residential neighbourhood, restaurant, ruin, schoolhouse, shed,
shop front, shopping mall-indoor, ski lodge, ski resort, skyscraper, stable,
stadium-baseball, stadium-football, stadium-soccer, staircase, swimming pool-
indoor, swimming pool-outdoor, synagogue-outdoor, temple-east Asia,
temple-south Asia, throne room, tower, tree house, trench, veranda, viaduct,
village, water tower, wind farm, windmill, yard

Table 4: Objects and buildings recognised by building and object localisation.

Each one object type and building in Table 4 has been mapped to corresponding lexical
resource in the BabelNet and DBpedia semantic network. For example, “bottle” is
represented with the resource https://babelnet.org/synset?word=bn:00012339n, while
“abbey” with the resource https://babelnet.org/synset?word=bn:00000234n (Figure 26). It
should be noted that some values have been mapped to BabelNet concepts and not the
complete list, since the list of objects and buildings is under development. As depicted in
Figure 24, the v4d:LocalisasationView uses the property v4d:tag to associate recognised
images and building with the video and image media types.

Text Analysis

Text analysis addresses the analysis and capture of the natural language textual material into
structured representations, so that appropriate system responses can subsequently be
inferred and textual summaries can be produced. For example, text analysis aims to
semantically analyse the captions and/or descriptions of assets (video titles, paining
descriptions, image captions) in order to extract named entities, concepts and relations that
can be used to enrich the semantic signature of the asset.

The output of text analysis is already semantically annotated, i.e. the detected concepts are

Figure 26: Object hierarchy and Building example

https://babelnet.org/synset?word=bn:00012339n
https://babelnet.org/synset?word=bn:00000234n

D5.1 – V3.0

Page 42

associated with DBpedia and/or BabelNet resources. The V4Design core vocabulary needs
only to capture these annotations and associate them with the original text and possible to
the media type (video or image) that tis textual content is related with through instances of
the v4d:TextAnalysisView. This pattern for associating semantics with assets and media
types is described in Section 7 and it is common for all types of resources.

Text Generation

Text generation generates textual reports, descriptions, or summaries starting from
annotations extracted from text, webpages, and/or visual analysis. It starts from abstract
representations, modelled, e.g., as RDF triples, which are stored in the Knowledge Base.
Similarly to text analysis, the output of text generation does not need a particular
vocabulary. The only requirements is to associate the generated texts with the assets and
media types (through the v4d:TextGenerationView), which is described in Section 7.

3D Models

3D model reconstruction is responsible for conversion of input video and image data into 3D
point clouds and meshes. Apart from the actual object, this task also generates a number of
metadata, such as the number of point clouds, the initial source of reconstruction (video or
the set of images), as well as features, such as quality.

The v4d:3DModelView acts as a container for capturing metadata generated by the 3D model
reconstruction module. Currently, only three such metadata properties are defined, namely
v4d:faceCount, v4d:textureCount and v4d:image. The first two are datatype properties,
while the last one is an object property that associates the 3D model with the images that
have been used to generate it. An example is presented in Section 7 about the way these
properties can be instantiated in a 3D model view.

6.1.3 KB Population

As depicted in Figure 1, WP5 encapsulates the KB population module, which is responsible
for translating incoming data into RDF-based annotations, following the annotation model
we described in the previous sections. More specifically, for each input type (aesthetics,
building and object localisation, text analysis, text generation and 3D model reconstruction),
WP5 implements a mapping services pertinent to the format and structure of the data that
is provided as input (Figure 27). The logic behind the translation is straightforward and
examples are given in Section 7.

6.1.4 Other annotation properties

As we have already described, the technical requirements (D6.2) are still under
development, therefore the exact capabilities and outputs of the V4Design components
have not been finalised yet. The annotation properties described so far have been mainly
elicited through the simulation example we present in Section 7 and aim at capturing the
analysis results of the current development cycle towards MS2. In Table 5, we present a list
of pending annotation properties that are not yet part of the V4Design Views, but there will
be included in the model in next development and validation cycles, towards the first
prototype.

D5.1 – V3.0

Page 43

Annotation property Mappings

v4d:licence
http://purl.org/dc/terms/license

http://schema.org/license

v4d:date
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/terms/created

v4d:lng http://schema.org/longitude

v4d:lat http://schema.org/latitude

v4d:location http://schema.org/location

v4d:language http://purl.org/dc/terms/language

v4d:material http://schema.org/material

v4d:scale http://purl.org/ontology/x3d/scale

v4d:size http://purl.org/ontology/x3d/size

v4d:width http://schema.org/width

v4d:height http://schema.org/height

v4d:format http://purl.org/dc/terms/format

v4d:timestamp http://purl.org/dc/elements/1.1/date

v4d:thumbnail http://schema.org/thumbnail

v4d:relevantAssets http://purl.org/dc/terms/relation

v4d:subModel http://purl.org/dc/terms/isPartOf

Table 5: Pending annotation properties to be included in the next development cycle

6.2 Ontology-based Reasoning Framework

So far, the focus has been mainly on the identification of V4Design’s key modelling
requirements and the development of pertinent vocabularies to support the representation
and mapping of content on semantic knowledge structures.

In this section, we present the preliminary version of WP5’s reasoning framework (towards
MS2/M12), which aims at the intelligent aggregation of the metadata collected from the
various V4Design modules by combining, integrating and semantically interpreting
knowledge captured in the KB. The reasoning techniques employed by WP5 at this stage
constitute the first preliminary approach to address the requirements, with the rest pending
for later prototypes. More elaborate and flexible reasoning and interpretation schemes will
be tackled in future versions of the framework, as V4Design components mature, which will
allow in turn for more sophisticated interpretations that will be reported in upcoming
deliverables.

http://purl.org/dc/terms/license
http://schema.org/license
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/terms/created
http://schema.org/longitude
http://schema.org/latitude
http://schema.org/location
http://purl.org/dc/terms/language
http://schema.org/material
http://purl.org/ontology/x3d/scale
http://purl.org/ontology/x3d/size
http://schema.org/width
http://schema.org/height
http://purl.org/dc/terms/format
http://purl.org/dc/elements/1.1/date
http://schema.org/thumbnail
http://purl.org/dc/terms/relation
http://purl.org/dc/terms/isPartOf

D5.1 – V3.0

Page 44

6.2.1 Reasoning Architecture

The core elements of the reasoning system are depicted in Figure 28. All in all, the
framework extends the semantics of the V4Design’s conceptual models (i.e. the Annotation
Model) with rules that, based on the available context, i.e. the metadata collected from the
analysis tasks, further update the KB.

The reasoning framework heavily depends on the semantics of the V4Design Annotation
Model described in Section 6.1. The semantics is used to acquire a preliminary
understanding of the available content and the dependencies among the multimodal results
in the form of knowledge graphs that interlink metadata. These knowledge graphs are then
used as input to the reasoning framework that triggers the necessary reasoning procedure
(rules) to derive additional relations. As such, the reasoning framework can be viewed as a
hybrid data integration and interpretation scheme, where ontologies and rules incrementally
couple dynamic information.

Reasoning is performed over the Knowledge Base (see Figure 1) where all the metadata of
the V4Design pipeline are stored. For the prototype implementation, the GraphDB triple
store8 has been used to implement the Knowledge Base. It is a highly scalable RDF triple
store that provides native OWL 2 RL reasoning services9 and SPARQL-based query

8
 http://graphdb.ontotext.com/

9
 https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Figure 27: KB population service

Figure 28: Abstract reasoning architecture

http://graphdb.ontotext.com/
https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

D5.1 – V3.0

Page 45

interfaces10. The native OWL 2 RL reasoning ensures that the semantics of the OWL 2
language is fully supported, such as the transitivity of subclass relations. However, the native
OWL 2 reasoning services provide limited expressivity and are not able to handle complex
domain relations. For example, the semantics of OWL 2 does not allow the modelling of
relations among instances that do not follow the tree model property. In addition, the native
DL semantics does not allow the dynamic generation of new individuals.

Apart from semantically analysing and correlating metadata, reasoning will also provide
advanced searching capabilities to the end users. For example, the parameters of user
queries (e.g. filtering by keywords or tags) will be handled by the reasoning framework in
order to formulate the necessary queries to retrieve metadata from the KB and send
responses back. This advanced query formulation service will be not part of the operational
prototype (MS2/M12) and it will be integrated in the first prototype (M3/M18).

6.2.2 Inference Rules

We use SPIN rules, i.e. SPARQL construct graph patterns, to implement expressive reasoning
rules, enabling property value propagation and instance generation (when needed). The
core idea is to associate each reasoning task with one or more SPARQL rules that address
specific reasoning requirements, e.g. to propagate aesthetics from images to the 3D models.
In the following, we present examples of such reasoning cases and rules. More elaborate
rule-based reasoning cases will be tackled in future versions of the prototype framework and
reported in upcoming deliverables.

Enriched 3D models with aesthetics

As described in Section 6.1.2, V4Design extracts and categorises the aesthetics of paintings
and images that contain architecture objects and buildings based on their style (i.e.
impressionism, cubism and expressionism), creator and emotion that they evoke to the

10

 https://www.w3.org/TR/sparql11-overview/

Figure 29: SPARQL rule for 3D model annotation enrichment with aesthetics

https://www.w3.org/TR/sparql11-overview/

D5.1 – V3.0

Page 46

viewer. At the same time, 3D model reconstruction creates 3D models based on a set of
images. The inference rule Figure 29 is used to propagate the aesthetics of images, which
have been used to reconstruct a 3D model, to the 3D object itself.

More specifically, the rule searches for images that have been annotated with a ?style and
that they have participated in the reconstruction of a 3D model, i.e. both the aesthetic
annotation (?annotation1) and the 3D model annotation (?annotation2) annotate the
same target (?image). If such a style exists, then it is associated with the annotation of the
3D model, using a :tag property assertion.

Indirect annotations

Another way the propagation of analysis results among media types can help is the
derivation of indirect annotations, i.e. annotations that do not directly refer to the
generated 3D model, but they can be used later in ranking the search results or fetching
results to certain user queries that might be relevant to the intended context. For example,
the title of a video can provide useful insights about the 3D models that have been
reconstructed from that video, even if we cannot assume that all 3D models will be relevant
of the textual content of the title. The rule in Figure 30 illustrates the SPARQL rules that
combine textual and 3D model annotations.

Figure 30: Propagation of textual analysis results to 3D model annotations

D5.1 – V3.0

Page 47

7 ONTOLOGY VALIDATION

We present in this section the instantiation of the V4Design Annotation Model to map the
results of V4Design components on a simulation example. More precisely, in order to better
understand the modelling requirements in WP5 and to have a preliminary view on the
output each component generates, we started with an example image and (manually) went
through all the analysis steps of the V4Design pipeline (see D6.2 for more technical details
on the pipeline and technical requirements of each component). At each step, the technical
partners provided feedback about the generated results (both in terms of the format and
content), helping us generate the respective annotation vocabularies. The example image,
along with the caption is given below.

7.1 Building Localisation

The output of building localisation on the image is given below.

{
 "simmo": "http://v4design-ds.com/simmo/<ref>",
 "assets": [
 {
 "type": "image",
 "original": "http://v4design-ds.com/file/<imageId>",
 "mask": "https://v4design-ds.com/file/<maskId>",
 "tags": [
 "tower"
]
 }
]
}

More specifically, the module generates a mask for the building (Eiffel Tower) depicted in
the picture and associated this mask with a tag (‘tower’). The output also contains
descriptive properties relevant to the references and Ids of the underlying data storage.

Caption: The Eiffel Tower seen from the Champ de Mars

D5.1 – V3.0

Page 48

Figure 31: Example mapping of building localisation results for the simulation example

The generated knowledge graphs contains all the necessary relations to adequately map the
output of building localisation. Following the annotation model described in Section 6.1, an
v4d:BuildingLocalisationAnnotation resource is generated that is linked with the target
of the annotation, i.e. the generated mask (Mask_1) and the annotation view
(BuildingLocalisationView_1). The latter, defines property assertions relevant to the
original image where this mask has been extracted from (Image_1), as well as the tag
relevant tag which is the BabelNet resource for the concept “tower”. The RDF graph in the
Turtle syntax11 is given below.

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://v4design.eu/ontologies/simulation_v2#BuildingLocalisationAnnotation_1>
 a <https://v4design.eu/ontologies/BuildingLocalisationAnnotation> ;
 oa:hasBody <https://v4design.eu/ontologies/simulation_v2#LocalisationBuildingVie
w_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/Mask_1> .

<https://v4design.eu/ontologies/Mask_1>
 a <https://v4design.eu/ontologies/Mask> ;
 v4d:uri "https://v4design-ds.com/file/Mask_1" .

v4d:simulation_v2#LocalisationBuildingView_1
 a v4d:LocalisationBuildingView ;

11

 https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/

D5.1 – V3.0

Page 49

 v4d:originalImage v4d:Image_1 ;
 v4d:tag <https://babelnet.org/synset?word=bn:00077766n> .

<https://babelnet.org/synset?word=bn:00077766n> rdfs:label "tower" .
v4d:Image_1
 a v4d:Image ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:uri "http://v4design-ds.com/file/Image_1" .

7.2 Aesthetics

The output of the aesthetics module on the image is given below.

{
 "simmo": "http://v4design-ds.com/simmo/<ref>",
 "image_uri": "http://v4design-ds.com/file/<imageId>",
 "tags": [
 "minimalism"
]
}

More specifically, the module generates one style (minimalism) for the building depicted in
the picture. The generated knowledge graph is depicted in Figure 32. An instance of the
AestheticsAnnotation class is defined, which is associated with the annotation target
(Image_1) and the annotation source (instance of the AestheticView class). The style
property is used to define the output of aesthetics extraction, using the BabelNet resource
for minimalism.

Figure 32 Example mapping of aesthetics results for the simulation example

The RDF graph in the Turtle syntax is given below.

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

D5.1 – V3.0

Page 50

<https://v4design.eu/ontologies/simulation_v2#AetheticsAnnotation_1>
 a <https://v4design.eu/ontologies/AetheticsAnnotation> ;
 oa:hasBody <https://v4design.eu/ontologies/simulation_v2#AestheticView_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/Image_1> .

<https://v4design.eu/ontologies/simulation_v2#AestheticView_1>
 a <https://v4design.eu/ontologies/AestheticView> ;
 v4d:style <https://babelnet.org/synset?word=bn:00055162n> .

v4d:Image_1
 a v4d:Image ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:uri "http://v4design-ds.com/file/Image_1" .

<https://babelnet.org/synset?word=bn:00055162n> rdfs:label "minimalism" .

7.3 Text analysis

An excerpt of the output of text analysis on the caption of the image is give below.

{
 "data": {
 "simmo": "http://v4design-ds.com/simmo/<ref>"
 "dbpedia": {
 "all": [
 {
 "end": 16,
 "text": "Eiffel Tower",
 "type":
"Schema:Place,DBpedia:Place,DBpedia:ArchitecturalStructure,DBpedia:Building",
 "uri": "http://dbpedia.org/resource/Eiffel_Tower",
 "begin": 4
 },
 {
 "end": 44,
 "text": "Champ de Mars",
 "type": "",
 "uri": "http://dbpedia.org/resource/Champ_de_Mars",
 "begin": 31
 }
],
 "other": [
 {
 "end": 44,
 "text": "Champ de Mars",
 "type": "",
 "uri": "http://dbpedia.org/resource/Champ_de_Mars",
 "begin": 31
 }
]
 }
 }
}

The generated knowledge graph is depicted in Figure 33. More specifically, the caption of
the image is represented as a Text media type (Text_1). An instance of the TextAnalysis-
Annotation is generated for linking Text_1 with the results of text analysis through tag

D5.1 – V3.0

Page 51

property assertions, which are two DBpedia concepts. It should be noted here that since the
Text_1 and the Image_1 of the previous examples have the same simmoRef value, therefore
we can infer that image and the text (caption in this case) belong to the same logical unit of
the SIMMO model.

Figure 33 Example mapping of text analysis results on the caption of the image

The RDF graph in the Turtle syntax is given below.

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .

<https://v4design.eu/ontologies/simulation_v2#TextAnnotation_1>
 a <https://v4design.eu/ontologies/TextAnalysisAnnotation> ;
 oa:hasBody <https://v4design.eu/ontologies/simulation_v2#TextualView_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/Text_1> .

<https://v4design.eu/ontologies/simulation_v2#TextualView_1>
 a <https://v4design.eu/ontologies/TextAnalysisView> ;
 v4d:tag <http://dbpedia.org/resource/Champ_de_Mars>, <http://dbpedia.org/resourc
e/Eiffel_Tower> .

v4d:Text_1
 a v4d:Text ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:text "The Eiffel Tower seen from the Champ de Mars" .

7.4 3D Model Reconstruction

3D model reconstruction needs a collection of images in order to be able to create a 3D
model. In this example, we assume that the module has already provided with a collection of
images, one of which is the Image_1 we use in our example. The output of 3D model
reconstruction is given below.

D5.1 – V3.0

Page 52

{
 "reconstructions":[
 {
 "reconstructionId":{
 "id":"1234"
 },
 "reconstructionGroupId":{
 "id":"5678"
 },
 "inputContent":[
 {
 "sourceId":"http://v4design-ds.com/file/<imageId>"
 },
 {
 "sourceId":" /3448326130_58de020bfb_o.jpg"
 }
],
 "usedContent":[
 {
 "sourceId":"http://v4design-ds.com/file/<imageId>"
 },
 {
 "sourceId":"/35073409352_1e142a970c_o.jpg"
 }
],
 "textureSize": "123456",
 "facecount": "123456"
 }
]
}

The generated knowledge graph is depicted in Figure 34. More specifically, the
_3DModelAnnotation instance annotates the _3DModel_1 resource with the images that
have been used to generate the 3D models, as well as with the two attributes relevant to the
face count and texture size.

D5.1 – V3.0

Page 53

Figure 34: Example mapping of 3D model reconstruction results

The RDF graph in the Turtle syntax is given below.

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .

<https://v4design.eu/ontologies/simulation_v2#_3DModelAnnotation_1>
 a <https://v4design.eu/ontologies/_3DModelAnnotation> ;
 oa:hasBody <https://v4design.eu/ontologies/simulation_v2#_3DModelView_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/_3DModel_1> .

<https://v4design.eu/ontologies/simulation_v2#_3DModelView_1>
 a <https://v4design.eu/ontologies/_3DModelView> ;
 v4d:faceCount "123456" ;
 v4d:textureSize "123456" ;
 v4d:image v4d:Image_1 ;
 v4d:tag <https://babelnet.org/synset?word=bn:00077766n> .

v4d:_3DModel_1
 a v4d:_3DModel ;
 v4d:uri "http://v4design-ds.com/3dmodel/ddfrt4hcs257" .

v4d:Image_1
 a v4d:Image ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:uri "http://v4design-ds.com/file/Image_1" .

7.5 Language Generation

An example of the output of text generation is given below.

D5.1 – V3.0

Page 54

{
 "simmo": "http://v4design-ds.com/simmo/<ref>",
 "text": "this is an example summary",
 "lang": "en"
}

The generated knowledge graphs are shown in Figure 35. The instance of the
TextGenerationAnnotation defines a view directly on the 3D model instance, describing the
textual description that should be presented in the user. In this example, we just illustrate of
the 3D model with an example text (also, the lang attribute is not depicted).

Figure 35: Example mapping of text generation results

The RDF graph in the Turtle syntax is given below.

@prefix ns0: <http://www.w3.org/ns/oa#> .
@prefix ns1: <https://v4design.eu/ontologies/> .

<https://v4design.eu/ontologies/simulation_v2#TextGenerationAnnotation_1>
 a <https://v4design.eu/ontologies/TextGenerationAnnotation> ;
 ns0:hasBody <https://v4design.eu/ontologies/simulation_v2#TextGenerationView_1>
;
 ns0:hasTarget <https://v4design.eu/ontologies/_3DModel_1> .

<https://v4design.eu/ontologies/_3DModel_1>
 a <https://v4design.eu/ontologies/_3DModel> ;
 ns1:uri "http://v4design-ds.com/3dmodel/ddfrt4hcs257" .

ns1:simulation_v2#TextGenerationView_1
 a ns1:TextGenerationView ;
 ns1:summary "this is an example summary" .

Figure 36 presents the complete RDF knowledge graph that is generated for the simulation
example.

D5.1 – V3.0

Page 55

Figure 36: The complete RDF knowledge graph with the annotation model of the simulation example

D5.1 – V3.0

Page 56

8 CONCLUSIONS

In this document we provided the requirement specifications and the state-of-the-art
analysis relevant to the building of the semantic knowledge structures addressed within
“T5.1: Semantic content representation”. We also described the current status of the
V4Design ontologies towards MS2 that encode in a structured way the vocabulary and the
precise semantics of information relevant to the V4Design application context. We have also
presented the preliminary version of WP5’s reasoning framework towards MS2 (“T5.2:
Semantic integration and reasoning”) for combining, integrating and semantically
interpreting and enriching the knowledge captured in the KB. The current annotation model
of V4Design has been validated through a simulation example organised within WP5 in order
to elicit modelling requirements and acquire a better understanding of the structure and
content of the outputs provided by each component of the V4Design pipeline.

Next steps include further enrichments and enhancements of WP5 ontology-based
framework in three main directions. First, to refine the already developed annotation
models and to provide and validate additional ontology constructs for capturing richer
domain knowledge pertinent population of the KB with data (e.g. BIM), based on the richer
output the various modules will provide towards the first prototype (M18). The annotation
model will be also enriched with additional metadata properties, when it is a clear view on
the exact output of the analysis, e.g. the annotations of the 3D models. Second, to enhance
the reasoning capabilities that will address more elaborate interpretation aspects by (i)
enriching the supported semantics both at the terminological level, by defining additional
class and property axioms, and at the assertional level by incorporating inference rules, (ii)
handling imperfect information (i.e. missing or uncertain inputs). Special emphasis will be
also place on aggregating the results of textual analysis for entity disambiguation. Finally, in
parallel with “T5.3: Linked data for dynamic 3D objects retrieval”, efficient searching
mechanisms will be implemented in order to provide an intelligent query interface for
addressing users’ searching requirements.

D5.1 – V3.0

Page 57

9 REFERENCES

Baader, Franz. et al. 2003. Description Logic Handbook The Description Logic Handbook:
Theory, Implementation, and Applications. eds. Franz Baader et al. Cambridge
University Press. http://dl.acm.org/citation.cfm?id=885746 (September 14, 2015).

Breslin, John G., Andreas Harth, Uldis Bojars, and Stefan Decker. 2005. “Towards
Semantically-Interlinked Online Communities.” The Semantic Web: Research and
Applications.

Ciccarese, Paolo et al. 2013. “PAV Ontology: Provenance, Authoring and Versioning.” Journal
of Biomedical Semantics 4(1): 37.
http://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-4-37 (October 15,
2018).

Deborah L. McGuinness, Frank van Harmelen. 2004. “Owl Web Ontology Language
Overview.” W3C recommendation 10.2004-03.

Doerr, Martin et al. 2010. “The Europeana Data Model (EDM).” In World Library and
Information Congress,.

Fernández-López, M, A Gómez-Pérez, and Natalia Juristo. 1997. “METHONTOLOGY: From
Ontological Art Towards Ontological Engineering.” AAAI-97 Spring Symposium Series.

Gangemi, Aldo, and Peter Mika. 2003. “Understanding the Semantic Web through
Descriptions and Situations.” In Proceedings of ODBASE03 Conference, Springer, Berlin,
Heidelberg, 689–706. http://link.springer.com/10.1007/978-3-540-39964-3_44 (July 12,
2017).

Glimm, Birte et al. 2014. “HermiT: An OWL 2 Reasoner.” Journal of Automated Reasoning.

Grau, Bernardo Cuenca et al. 2008. “OWL 2: The next Step for OWL.” Web Semantics:
Science, Services and Agents on the World Wide Web 6(4): 309–22.
http://linkinghub.elsevier.com/retrieve/pii/S1570826808000413 (June 23, 2017).

Grosof, Benjamin N, Ian R Horrocks, Raphael Volz, and Stefan Decker. 2003. “Description
Logic Programs: Combining Logic Programs with Description Logic.” Proceedings of the
12th international conference on World Wide Web.

Gruber, Thomas R. 1993. “A Translation Approach to Portable Ontology Specifications.”
Knowledge Acquisition.

Haarslev, Volker, and Ralf Möller. 2003. “Racer: A Core Inference Engine for the Semantic
Web.” Proceedings of the 2nd International Workshop on Evaluation of Ontologybased
Tools.

Van Hage, Willem Robert et al. 2011. “Design and Use of the Simple Event Model (SEM).”
Journal of Web Semantics.

Harris, Steve, and Andy Seaborne. 2013. W3C Recommendation SPARQL 1.1 Query
Language.

He, S. Y. et al. 2004. “Effects of Pres0sure Reduction Rate on Quality and Ultrastructure of
Iceberg Lettuce after Vacuum Cooling and Storage.” In Postharvest Biology and

D5.1 – V3.0

Page 58

Technology, , 263–73.

Horrocks, Ian et al. 2004. “SWRL : A Semantic Web Rule Language Combining OWL and
RuleML.” W3C Member submission 21.

ter Horst, Herman J. 2004. “Extending the RDFS Entailment Lemma.” In The Semantic Web –
ISWC 2004,.

Kalogerakis, Evangelos, Stavros Christodoulakis, and Nektarios Moumoutzis. 2006. “Coupling
Ontologies with Graphics Content for Knowledge Driven Visualization.” In Proceedings -
IEEE Virtual Reality,.

Knublauch, Holger, James A. Hendler, and Kingsley Idehen. 2011. “SPIN - Overview and
Motivation W3C: Member Submission 22 February 2011.” 22 February 2011.

Lebo, Timothy, Satya Sahoo, and D McGuinness. 2013. “PROV-O: The PROV Ontology.” W3C
Recommendation.

Miles, Alistair. 2006. “SKOS Core Vocabulary Specification.” English (November 2005): 1–28.
https://www.w3.org/TR/swbp-skos-core-spec/ (October 15, 2018).

Motik, Boris, Ulrike Sattler, and Rudi Studer. 2005. “Query Answering for OWL-DL with
Rules.” Web Semantics.

De Nicola, Antonio, Michele Missikoff, and Roberto Navigli. 2005. “A Proposal for a Unified
Process for Ontology Building: UPON.” In Springer, Berlin, Heidelberg, 655–64.
http://link.springer.com/10.1007/11546924_64 (October 15, 2018).

Noy, Natalya F., and Deborah L. McGuinness. 2001. “Ontology Development 101: A Guide to
Creating Your First Ontology.” Stanford Knowledge Systems Laboratory.

Passant, Alexandre, Uldis Bojars, John G. Breslin, and Stefan Decker. 2010. “The SIOC Project:
Semantically-Interlinked Online Communities, from Humans to Machines.” In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics),.

Perez, Jorge, Marcelo Arenas, and Claudio Gutierrez. 2006. “Semantics and Complexity of
SPARQL.” : 30–43. http://link.springer.com/10.1007/11926078_3 (October 15, 2018).

Rosati, Riccardo. 2006. “DL+log: Tight Integration of Description Logics and Disjunctive
Datalog.” In The Tenth International Conference on Principles of Knowledge
Representation and Reasoning KR2006,.

Sanderson, Robert, Paolo Ciccarese, and Benjamin Young. 2017. W3C Web Annotation Data
Model. https://www.w3.org/TR/annotation-model/ (October 15, 2018).

Scherp, Ansgar, Thomas Franz, Carsten Saathoff, and Steffen Staab. 2009. “{F--A} Model of
Events Based on the Foundational Ontology {Dolce+DnS Ultralight}.” In Fifth
International Conf. on Knowledge Capture, , 137–44.
http://doi.acm.org/10.1145/1597735.1597760.

Sikos, L. F. 2017. “3D Model Indexing in Videos for Content-Based Retrieval via X3D-Based
Semantic Enrichment and Automated Reasoning.” In Proceedings of the 22nd
International Conference on 3D Web Technology - Web3D ’17,.

Sikos, L.F. 2015. Mastering Structured Data on the Semantic Web: From HTML5 Microdata to

D5.1 – V3.0

Page 59

Linked Open Data Mastering Structured Data on the Semantic Web: From HTML5
Microdata to Linked Open Data.

Sikos, Leslie F, and David M W Powers. 2015. “Knowledge-Driven Video Information
Retrieval with LOD: From Semi-Structured to Structured Video Metadata.” Proceedings
of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval.

Sirin, Evren et al. 2007. “Pellet: A Practical OWL-DL Reasoner.” Web Semantics.

Staab, Steffen, Rudi Studer, Hans Peter Schnurr, and York Sure. 2001. “Knowledge Processes
and Ontologies.” IEEE Intelligent Systems and Their Applications.

Stegmaier, Florian et al. 2013. “Unified Access to Media Metadata on the Web.” IEEE
Multimedia 20(2): 22–29. http://ieeexplore.ieee.org/document/6353418/ (October 15,
2018).

Studer, Rudi, V.Richard Benjamins, and Dieter Fensel. 1998. “Knowledge Engineering:
Principles and Methods.” Data & Knowledge Engineering 25(1–2): 161–97.
https://www.sciencedirect.com/science/article/pii/S0169023X97000566 (May 4, 2018).

Suárez-Figueroa, Mari Carmen, Asunción Gómez-Pérez, and Boris Villazón-Terrazas. 2009.
“How to Write and Use the Ontology Requirements Specification Document.” In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics),.

Tsarkov, Dmitry, and Ian Horrocks. 2006. “FaCT++ Description Logic Reasoner: System
Description.” In Springer, Berlin, Heidelberg, 292–97.
http://link.springer.com/10.1007/11814771_26 (October 15, 2018).

Vardi, Moshe Y. 1996. “Why Is Modal Logic so Robustly Decidable?” In Descriptive
Complexity and Finite Models: Proceedings of a DIMACS Workshop,.

Vasilakis, George et al. 2007. “A Common Ontology for Multi-Dimensional Shapes.”
https://core.ac.uk/download/pdf/37832944.pdf (October 15, 2018).

D5.1 – V3.0

Page 60

A. Appendix

A.1. Simulation example RDF annotation graph

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://v4design.eu/ontologies/simulation_v2#BuildingLocalisationAnnotation_1>
 a <https://v4design.eu/ontologies/BuildingLocalisationAnnotation> ;
 oa:hasBody
<https://v4design.eu/ontologies/simulation_v2#LocalisationBuildingView_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/Mask_1> .

<https://v4design.eu/ontologies/simulation_v2#LocalisationBuildingView_1>
 a <https://v4design.eu/ontologies/LocalisationBuildingView> ;
 v4d:originalImage v4d:Image_1 ;
 v4d:tag <https://babelnet.org/synset?word=bn:00077766n> .

<https://babelnet.org/synset?word=bn:00077766n> rdfs:label "tower" .
v4d:Image_1
 a v4d:Image ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:uri "http://v4design-ds.com/file/Image_1" .

v4d:simulation_v2#AetheticsAnnotation_1
 oa:hasTarget v4d:Image_1 ;
 a v4d:AetheticsAnnotation ;
 oa:hasBody v4d:simulation_v2#AestheticView_1 .

v4d:simulation_v2#_3DModelView_1
 v4d:image v4d:Image_1 ;
 a v4d:_3DModelView ;
 v4d:faceCount "123456" ;
 v4d:textureSize "123456" ;
 v4d:tag <https://babelnet.org/synset?word=bn:00077766n> .

v4d:simulation_v2#AestheticView_1
 a v4d:AestheticView ;
 v4d:style <https://babelnet.org/synset?word=bn:00055162n> .

<https://babelnet.org/synset?word=bn:00055162n> rdfs:label "minimalism" .
v4d:simulation_v2#_3DModelAnnotation_1
 oa:hasBody v4d:simulation_v2#_3DModelView_1 ;
 a v4d:_3DModelAnnotation ;
 oa:hasTarget v4d:_3DModel_1 .

v4d:_3DModel_1
 a v4d:_3DModel ;
 v4d:uri "http://v4design-ds.com/3dmodel/ddfrt4hcs257" .

v4d:simulation_v2#TextGenerationAnnotation_1
 oa:hasTarget v4d:_3DModel_1 ;
 a v4d:TextGenerationAnnotation ;
 oa:hasBody v4d:simulation_v2#TextGenerationView_1 .

v4d:simulation_v2#TextGenerationView_1

D5.1 – V3.0

Page 61

 a v4d:TextGenerationView ;
 v4d:summary "this is an example summary" .

v4d:Mask_1
 a v4d:Mask ;
 v4d:uri "https://v4design-ds.com/file/Mask_1" .

v4d:simulation_v2#TextAnnotation_1
 a v4d:TextAnalysisAnnotation ;
 oa:hasBody v4d:simulation_v2#TextualView_1 ;
 oa:hasTarget v4d:Text_1 .

v4d:Text_1
 a v4d:Text ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:text "The Eiffel Tower seen from the Champ de Mars" .

v4d:simulation_v2#TextualView_1
 a v4d:TextAnalysisView ;
 v4d:tag <http://dbpedia.org/resource/Champ_de_Mars>,
<http://dbpedia.org/resource/Eiffel_Tower> .

A.2. Vocabulary mappings

skos <http://www.w3.org/2004/02/skos/core>
oa <http://www.w3.org/ns/oa>
v4d <https://v4design.eu/ontologies>
edm <http://www.europeana.eu/schemas/edm>
vidont <http://vidont.org>
ore <http://www.openarchives.org/ore/terms/>
x3d <http://purl.org/ontology/x3d>
schema <http://schema.org/>

V4Design concept SKOS relation External concept

Classes

v4d:_3DModel skos:exactMatch x3d:3DModel

v4d:_3DModelAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:AestheticsAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:Building skos:broader schema:CivicStructure

v4d:BuildingLocalisationAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:Creator skos:relatedMatch edm:Agent

v4d:Image skos:exactMatch schema:ImageObject

v4d:Mask skos:broader schema:ImageObject

D5.1 – V3.0

Page 62

v4d:MediaType exact:match schema:MediaObject

v4d:ObjectLocalisationAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:Text skos:exactMatch schema:Text

v4d:TextAnalysisAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:TextGenerationAnnotation
skos:broadMatch

skos:relatedMatch

oa:Annotation

ore:Aggregation

v4d:Texture skos:exactMatch x3d:Texture

v4d:Video skos:exactMatch
schema:VideoObject

vidont:Video

v4d:View skos:relatedMatch ore:Proxy

Properties

creator skos:exactMatch schema:creator

image skos:exactMatch
schema:image

x3d:image

text skos:exactMatch schema:text

uri skos:exactMatch dcterms:identifier

A.3. Ontologies

The current version of the V4Design annotation model (described in Section 6.1) can be
found at: https://v4design.eu/wp-content/uploads/2018/10/v4design_ontologies_v1.zip.

The archive also contains the instantiation of the model for the simulation example
described in Section 7.

https://v4design.eu/wp-content/uploads/2018/10/v4design_ontologies_v1.zip

