

 Page 1

V4Design
Visual and textual content re-purposing FOR(4) architecture, Design and virtual

reality games

H2020-779962

D6.1

Roadmap towards the implementation
of the V4Design platform

Dissemination level: Public

Contractual date of delivery: Month 5, 31 May 2018

Actual date of delivery: Month 5, 31 May 2018

Workpackage: WP6 System integration and tool development for
content re-purposing

Task: T6.1 Technical requirements and system architecture

Type: Report

Approval Status: Final Draft

Version: 1.0

Number of pages: 63

Filename: D6.1_V4DesignRoadmap_20180531_v1.0.pdf

Abstract

D6.1 provides the time-plan for the development of the V4Design platform. It will specify the
functionality of the modules that will be developed within V4Design and of the platform as a whole.
In addition, it provides the specifications for the technical infrastructure and a detailed description of
the resources needed to achieve the aforementioned functionality.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

 Page 2

co-funded by the European Union

D6.1 – V1.0

Page 3

History

Version Date Reason Revised by

v0.1 30/04/2018 Creation of ToC and initial content and
distribution to V4Design consortium

Luis Fraguada

v0.2 04/05/2018 Contribution on CERTH components Spyros Symeonidis,
Elisavet Batziou,
Konstantinos
Avgerinakis,
George Meditskos,
Stefanos Vrochidis

v0.3 07/05/2018 Contribution on UPF’s components Simon Mille, Jens
Grivolla

v0.4 07/05/2018 Contribution on NURO’s components Yash Shekhawat

v0.5 08/05/2018 Contribution on KUL’s components Jens Derdaele

v0.6 11/05/2018 Creation of 1st integrated version based
on partner’s contributions and
distribution to technical partners and
technical manager

Ayman Moghnieh

v0.7 18/05/2018 Creation of 2nd integrated version based
on received comments

Luis Fraguada,
Ayman Moghnieh
Konstantinos
Avgerinakis

v0.8 24/05/2018 Internal review Simon Mille

v0.9 28/05/2018 Creation of 3rd integrated version based
on internal review

Ayman Moghnieh

v1.0 31/05/2018 Preparation of the final draft Konstantinos
Avgerinakis

Author list

Organization Name Contact Information

McNeel Ayman Moghnieh aymanmoghnieh@gmail.com

McNeel Luis Fraguada luis@mcneel.com

CERTH Spyros Symeonidis spyridons@iti.gr

CERTH Elisavet Batziou batziou.el@iti.gr

CERTH Konstantinos Avgerinakis koafgeri@iti.gr

CERTH George Meditskos gmeditsk@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

D6.1 – V1.0

Page 4

NURO Yash Shekhawat yash.shekhawat@nurogames.com

UPF Simon Mille simon.mille@upf.edu

UPF Jens Grivolla jens.grivolla@upf.edu

KUL Jens Derdaele jens.derdaele@kuleuven.be

D6.1 – V1.0

Page 5

Executive Summary

This deliverable contributes to the fulfilment of the project milestone MS1 “Project setup
and platform development roadmap”, which marks the successful initiation of the
V4Design’s architecture development. It provides an overview of the V4Design platform, the
platform integration approach, and describes the platform components, detailing their
functionalities, specifications, and required resources of each. In addition, it discusses the
specifications for the technical infrastructure of V4Design based on its selected architecture
model.

First, it contextualizes the work on integrating the V4Design platform in Enterprise
Application Integration, allowing for drawing from the integration patterns, practices and
tools available in this domain. It starts by describing the V4Design platform concept in a
manner that facilitates an early abstraction and classification of its components. These
components are then described in details, specifying their development plan and integration
model. Afterwards, the technical specifications of these components are discussed on two
different levels, basic and advanced, and then platform-level specifications are introduced to
govern the service development and integration. In addition, specifications related to
communication and messaging are presented, followed by the expected development
timeline and required resources for the platform. Finally, an in-depth discussion is presented
about the enterprise bus solution adopted for V4Design based on its concept and
specifications. This includes a comparative analysis of existing solutions that preceded the
selection of the adequate solution for V4Design. Finally, specifications regarding the use of
the Common Alerting Protocol (CAP) protocol are discussed.

This roadmap represents a common accord and a technical agreement between the partners
responsible for developing and deploying services and components in the V4Design
platform. It defines the approach for the implementation of the platform on several levels
and addresses all the main concerns related to this type of development. It therefore should
serve as guidelines for developing and integrating any component.

D6.1 – V1.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 APPLICATION ENTERPRISE INTEGRATION, DEFINITION AND RELEVANCE TO V4DESIGN
PLATFORM ... 9

2.1 Relevance of application enterprise integration to V4Design 9

2.2 Generic models of integrated and distributed applications 10

3 DESCRIPTION OF THE V4DESIGN PLATFORM EARLY CONCEPT 14

3.1 Choosing an integration model for V4Design .. 14

3.2 Early concept and envisioned architecture design .. 15

4 DESCRIPTIONS AND FUNCTIONALITIES OF THE V4DESIGN PLATFORM COMPONENTS 20

4.1 The V4Design user tools ... 20
4.1.1 The Rhino Design Tool for architects ... 20
4.1.2 The NURO VR Authoring tool ... 22
4.1.3 The V4Design REST API for user tools .. 23

4.2 Data processing and analysis tools ... 24
4.2.1 The Spatio-Temporal building and object localization (STBOL) service 24
4.2.2 The Aesthetic Extraction and Texture Proposals (AE&TP) service 25
4.2.3 The 3D-Reconstruction Service .. 26

4.3 Semantic data services and tools ... 27
4.3.1 The KB Population service.. 27
4.3.2 Semantic Integration and Reasoning ... 28
4.3.3 The TALN Language Generation service .. 29
4.3.4 The TALN Language Analysis service.. 30

4.4 The data storage and retrieval tools ... 31

5 TECHNICAL SPECIFICATIONS OF SERVICES AND COMPONENTS 33

5.1 Basic specifications of platform components .. 35

5.2 Advanced specifications of platform components .. 36

5.3 Platform-level technical specifications ... 37
5.3.1 Data management and storage concerns .. 38
5.3.2 Local storage policy .. 39
5.3.3 Data access and querying policy .. 39
5.3.4 Availability and scalability of services .. 39

D6.1 – V1.0

Page 7

5.3.5 Platform security concerns .. 40

5.4 Communication and messaging .. 41

5.5 Development timeline ... 43

5.6 Required resources .. 44

6 AN ENTERPRISE BUS SOLUTION FOR V4DESIGN ... 46

6.1 Functionalities of message bus solutions .. 47

6.2 Functional aspects supported by the V4Design message bus 49
6.2.1 Supported functional aspects .. 50
6.2.2 Unsupported or irrelevant functional aspects for V4Design ... 51

6.3 Popular and relevant message bus solutions .. 51
6.3.1 Open-source message bus solutions ... 53
6.3.2 Legacy-based message bus solutions .. 55

6.4 Selecting a message bus solution for V4Design ... 56

6.5 Deploying the message bus in the cloud ... 57

6.6 Implementing the CAP messaging protocol .. 58
6.6.1 Formal definition of CAP standard format ... 59
6.6.2 Using CAP protocol in V4Design applications .. 60

7 CONCLUSIONS ... 62

8 REFERENCES .. 63

D6.1 – V1.0

Page 8

1 INTRODUCTION

This deliverable presents a roadmap for the development and integration of the V4Design
platform. It provides an overview of the technical concepts, concerns, existing approaches
and patterns, and related solutions and services in order to contextualize the discussions
about the development of the V4Design platform and the integration of its modules. These
issues are discussed from a conceptual stance rather than from a technical stance, in order
to engage the different profiles of project participants in the discussion about the platform
development.

First, the concept of Application Enterprise Integration is defined and discussed in chapter 1,
and its relevance to V4Design is defined, drawing from known generic types of integrated
and distributed applications in order to facilitate the definition of the architecture model for
V4Design.

Then, a description of the V4Design platform is presented in chapter 2, including its early
concept and envisioned architecture as described in early project documents. These
components are grouped into different modules, which will later allow us to study their
similarities and differences, and standardize their integration to the extent possible.

This is followed by a functional description for the platform services and components in
chapter 3, in which the functionalities of each service are discussed individually, and well as
its development milestones and integration model.

We then identify the technical specifications of these components in chapter 4, and discuss
on several levels: (1) basic specifications of components, (2) advanced specifications of
components, and (3) platform-level technical specifications. In addition, the communication
and messaging concerns are discussed, introducing the main messages that will be
exchanged by the components, followed by the accorded development timeline based on
the milestones of individual services and the global technical milestones of the project, and
by a discussion of the required resources for the development.

Finally, we revise message bus solutions in the context of this project in chapter 5, defining
the functionalities that are relevant to V4Design and identifying and evaluating different
message bus solutions that are deemed of relevance to the platform. Based on this
evaluation, a message bus solution is selected and its deployment as part of the V4Design
architecture is discussed. In addition, we address the use of the CAP protocol as an integral
part of the requirements for the platform, introducing its formal definition and studying its
use in V4Design applications.

This roadmap should serve as an early common understanding between the project’s
partners to orient the development of the platform services and components. It raises
several platform-level concerns that need to be addressed on the level of services, and
defines lines of standardization in the way services are implemented, deployed and
integrated. Building such understanding early on in the development process should
alleviate the platform integration task and help to achieve a more coherent platform that
meets the requirements in terms of functionalities and maturity level defined in the project
proposal and plan of work.

D6.1 – V1.0

Page 9

2 APPLICATION ENTERPRISE INTEGRATION, DEFINITION AND
RELEVANCE TO V4DESIGN PLATFORM

When building applications, system architects resort to three basic and generic architecture
models for systems that are composed of several modules, each operating relatively
independently from the others, otherwise known as distributed systems or applications:

A. Client–server architectures organize modules as client-side or server-side modules,
where the clients retrieve data from the server to format and display to the users,
and request the execution server-side processes. Client-server architectures are
usually adopted for small-scale applications and their model is seldom used for
composite applications that integrate several individual applications into a single
bundle.

B. Three-tier architectures move the client intelligence to a middle tier to simplify
application deployment. For instance, most large web applications are three-tier.
However, the scalability of this model and its compatibility with composite
applications is questioned.

C. Peer-to-peer architectures are otherwise a scalable and flexible solution for
integrated applications. This model is a decentralized organization of several
applications typically each hosted on its own machine. In general, peer-to-peer
architectures do not require a central machine to manage the network resources for
the integrated application. Instead all responsibilities are uniformly divided among all
machines, known as peers, which can serve both as clients and as servers, or in other
words can be services or user tools, or even specialize into specific roles within the
integrated application.

In general, there are several approaches to peer-to-peer integrations, the simplest of which
is a custom point-to-point integration that rests on connecting and chaining modules directly
one to the others. This is usually facilitated by open APIs and other paradigms of application
communication. It is an adequate approach when a small number of modules are integrated,
and it is a relatively straightforward approach that can be implemented with ease and speed.
However, the efficiency of custom point-to-point integration deteriorates rapidly and tends
to be complex, expensive and difficult to maintain when the number of integrated modules
grow, for instance the integration of 5 different modules may require up to 20 connections,
each implemented in an ad-hoc manner. Therefore, in many cases, there is a need for more
structured and standardized models of integration that can be sustained and scaled without
difficulties. These are discussed in section 1.2.

2.1 Relevance of application enterprise integration to V4Design

On a macro-scale, the main technical objectives behind integrating the V4Design
architecture are to reduce the number of point-to-point connections across an integrated
application, allowing each service or application to preserve a level of autonomy, and to be
loosely coupled with the rest of the architecture components. Without a proper integration
strategy, the interdependencies and connections among the services will grow rapidly in
complexity, and therefore becomes difficult to maintain, to scale, and to improve.

D6.1 – V1.0

Page 10

In practice, V4Design aim to integrate a set of different modules, each representing a service
that provides certain functionalities to the system. Some of the integrated modules are user
tools that govern the user processes throughout the system. Others are modules that
execute autonomously and sometimes continuously, for instance to crawl new data from
external sources or third-party providers. Some modules are concerned with storing and
servicing data throughout the system, and others provide singular capacities such as data
processing, metadata-extraction, feature extraction, analysis, reformatting, among others.

The high-level technical challenges that the V4Design platform faces as an integrated
application can be summarized in the following three points:

 Integrated applications are dependent on the network’s health and performance,
and unlike services or applications installed on a single server, the modules that
make up an integrated application need to communicate and synchronize over a
distributed network, which sometimes can suffer from delays, interruptions, data
loss and other typical fall downs of digital networks.

 Usually, integrated services can be highly dissimilar, not only in purpose and in
functional requirements, but also in the technological frameworks in which they have
been developed, and in the manner by which each handles data. Also, differences are
usually encountered in the way each application addresses security concerns.

 Integrated modules cannot be dependent on one another in the same way different
services work in singular service-oriented applications, where they are tightly chained
and highly interdependent. Each application should be allowed to evolve and change
independently from other integrated applications, and this is usually achieved by
loose coupling, which requires the use of transactions, queues provided by message-
oriented middleware, and interoperability standards.

Therefore, models for integrating composite and distributed architectures are a highly
relevant subject for V4Design because its system will be distributed among different servers
integrating distinct services with varied levels of maturity and performance. The system may
grow by integrating new tools and services in the future. Obsolete services may be replaced
with more advanced ones in the same way local changes are applied without affecting other
modules or components. In short, application integration models will guide and facilitate the
construction of a platform that meets the required maturity and performance levels defined
in the project’s objectives.

For this purpose, we accord a specific attention to the application integration models and
paradigms, not only from a technical stance, but also from a conceptual stance by which
pitfalls are avoided and best practices adopted to insure a swift and successful integration of
the V4Design platform under the available resources.

2.2 Generic models of integrated and distributed applications

Clearly, the contemplated V4Design system, which will be composed of independent
applications distributed over a network, requires a “peer-to-peer” type of architecture.
However, the V4Design system also incorporates legacy applications and heterogeneous
services, each owned and developed by a different entity. Therefore, custom peer-to-peer
architecture is not an adequate solution, and we need to consider more elaborate models of

D6.1 – V1.0

Page 11

peer-to-peer architectures for distributed applications. Concretely, we look at three models,
being Enterprise Service Bus (ESB), Service-Oriented Architectures (SOA), and Enterprise
Application Integration (EAI).

Enterprise Service Bus (ESB) architecture is essentially a set of rules and principles for
integrating numerous applications together over a bus-like infrastructure. The core concept
of the ESB architecture is the use of communication bus as the main paradigm of the
integration and as the system’s core component, enabling each application within the
architecture to establish a direct communication with the bus. This decouples applications
from each other, allowing them to communicate without dependency on or knowledge of
other systems on the bus. The concept of ESB was born out of the need to move away from
point-to-point custom integration, which becomes complex and hard to manage over time.

A Service-Oriented Architectures (SOA) is essentially a collection of services that
communicate with each other using a communication protocol. A service is defined as a
logical unit or a self-contained process that can be accessed remotely by other services. A
service can be composed of other elemental services or components, but it is treated as a
single unit or “black box” by the other services in the architecture. This independence
among the services allows each service to work, evolve, and grow with no strings attached,
and therefore this flexibility facilitates the integration of the application and its
maintenance, and allows for greater customization.

By definition, Enterprise application integration (EAI) is a paradigm that supports the
unrestricted sharing of data and processes throughout a set of networked applications in an
organization. The purpose of this integration is to support the seamless integration of
processes and services among the different modules of the architecture. In addition, this
integration aims to provide a unified interface for all of the integrated system components
that share and exchange data in an organized and mediated manner. Unlike ESB and SOA,
EAI has been devised to remedy a situation in large enterprises that have developed legacy
software in ad-hoc manners and now is facing the need to integrate them. It is a framework
of middleware tools that allows analysts to establish integration principles within an
enterprise environment and to encourage the use of software solutions in integrating the
different applications in this environment.

Figure 1: Gorton’s generic definition of EAI

D6.1 – V1.0

Page 12

Gorton et al. [1] provide a simple and straightforward definition of EAI visualized in Figure 1.
Accordingly, EAI has five generic components being:

i. User applications allow users to view and manipulate data, having custom graphic-
user-interfaces designed to support this purpose;

ii. Adapters establish and maintain the access mechanisms to the data and support the
deployment of data transformation services (known as intelligent adapters);

iii. Besides, and between the user applications and the data adapters is the middleware
which essentially is composed of three layer, the Orchestration layer that accepts
user requests and manages the processes required to accomplish them,

iv. the Transportation and Routing layer manages and rapidly executes data
transformations from one format to another as required, and

v. the Transport layer that is responsible for data transport between different data
sources.

It is worth noting that these models share a lot of features and are not mutually exclusive or
essentially do not represent distinct options. In essence, they are different strategies to build
composite architectures, and most implemented composite architectures draw on more
than one model. In Table 1 we present a high-level comparison of these three architecture
models for distributed and integrated applications.

 Advantages Disadvantages

Enterprise Service
Bus (ESB)
solutions

 Common solution to which a
large variety of open-source
and legacy solutions exit.

 Enforces a level of
standardization throughout the
application

 Efficient and consistent, and
highly reliable for small to mid-
size distributed applications.

 Easy to maintain and manage.

 In general, there are some
concerns about the scalability
of such model and its impact on
slowing the evolution of the
system.

 Single point of failure.

Service-Oriented
Architecture

(SOA) solutions

 Arguably, the single two most
important advantages of SOA
are scalability and platform
independence.

 In addition, it is easy to
upgrade and service, and highly
reliable.

 Relatively complex to develop.

 Have a relatively higher
machine costs and response
time.

Enterprise
Application

Integration (EAI)
solutions

 Supports complex distributed
asynchronous processes.

 Very flexible in terms of
architecture organization.

 Not very suitable for small
architecture, but much better
suited for highly complex
architectures.

D6.1 – V1.0

Page 13

 Efficient in data transportation
and formatting.

 Difficult to build and sometimes
to maintain.

 May have performance issues
related to the type of
middleware used, and
dependencies among its
components.

Table 1: Advantages and disadvantages of ESB, SOA, and EAI

In fact, ESB, SOA and EAI represent three different levels of application integration, often
compared to Russian stacked dolls, one encapsulating the others. The smallest doll is the
enterprise service bus because it is at the essence of SOA and EAI architectures, and the
most generic and straightforward solution. Next is service-oriented architecture, which is a
specific model of implementation with little variation (REST and SOAP frameworks are the
most common solutions). In SOA, services adhere to standard communications agreements,
as defined collectively by one or more service-description documents. Each service needs
not know the details about how other services are provided in the architecture. Finally, EAI is
the most elaborate definition of application integration model. It uses SoA and ESB principles
and expands on them, introducing concepts and patterns that are more relevant when
integrating large legacy applications together. For instance, it is an efficient framework to
adopt to integrate platforms of merging companies, or in binding the business software of
different departments.

D6.1 – V1.0

Page 14

3 DESCRIPTION OF THE V4DESIGN PLATFORM EARLY CONCEPT

V4Design is a platform that aims to enable the re-use and re-purpose of multimedia content
for architecture and game design and other areas of design applications. Therefore, it will
develop a platform that is able to acquire relevant content, extract assets from this content,
and generate more descriptive data and information about the extracted assets. This will
provide architects, video game designers and other designers with an innovative tool set
that enhances the creative phase of the designing process. These tools will enable the
recycling and reuse of visual and textual assets extracted from movies, paintings, virtual
environments, 3D models, and other digital mediums.

Hence, the purpose of the V4Design platform from a technical point of view is to enable the
integration of a multitude of tools that together can support the services promised by the
project’s objectives. These tools include a set of data crawling and retrieval tools that will
gather data from third parties and available online libraries and repositories, including those
owned by the consortium partners (DW, EF, AF, SLRS), in addition to freely available content
on the web.

This “raw” data will then be analysed by a series of tools that extract 3D and VR
representations of objects, buildings and cityscape environments, and other multimedia
data and associated textual information. More specifically, V4Design will build upon the
concept of semantic integration of heterogeneous 2D multimedia in order to generate
enhanced dynamic 3D structures and environments as realistic and comprehensive
representation of structures of interest.

In addition, other tools wills generate textual summaries from retrieved commentaries,
reviews, and critics of the analysed artwork and tuned to designers’ interests and profiles.
This semantic knowledge will act as complementary material to support the design process.
Finally, the platform will also present the user with a set of design tools that will allow
architects, designers and video game creators to leverage the value of the collected,
analysed and indexed resources. These design tools will make the wealth of 3D, VR,
aesthetic and textual information easily accessible by the users who can proceed to re-
purpose them according to design tasks.

3.1 Choosing an integration model for V4Design

Custom point-to-point integration is not an adequate solution for an application on the scale
of V4Design platform, which requires more streamlining in data transfer and the execution
of multi-service processes that span several modules that are different types of open and
proprietary systems, each with its own development, database, networking and operating
system, etc. Therefore, V4Design has an inherent need for standardized communication
among the application modules, which requires the use of middleware solutions, which at
their very basic are ESB-based, and in their most overreaching or ambitious form a complete
EAI solution.

Pragmatically, the scope of the V4Design implies that several aspects or concerns of
Enterprise Application Integration (EAI) may not be relevant, as the size and complexity of
the envisioned V4Design platform is smaller than typical cases where EAI is adopted.
Therefore, we will define the type or scope of enterprise integration model to adopt for

D6.1 – V1.0

Page 15

V4Design based on the detailed definition of its components and services, and on the
requirements for communication, security management, performance, and other relevant
aspects of system architecture design. These concerns will be explored in the coming
sections.

In the following, we describe the early concept of V4Design platform and its components
and services as detailed in the project proposal and implementation plan.

3.2 Early concept and envisioned architecture design

The first vision of the V4Design architecture was developed before the start of the project,
as part of the efforts of building the project proposal and combining the technical
contributions of the partners into a single and powerful platform. This exercise included a
definition of services, components, and processes based on the project’s technological
objectives as well as on the added value of existing tools and services that constitute the
project’s background. In addition, the project’s foreground is envisioned to conceive and
integrate a series of new components, which will be accounted for in the architecture
integration plan.

Based on this early concept of V4Design architecture and the project proposal, we define the
following set of modules as integral parts of the system architecture, describing the overall
role of each module and its owner in Table 2.

Module Description Owner(s)

User tools This module encapsulates the 3D design tool and the
NURO VR Authoring tool planned for V4Design. Both
tools will act at the platform’s user interface or in other
words a user-oriented toolset.

NURO,
McNeel

Data Processing
and Analysis

A set of tools for feature extraction and metadata
classification of assets. Includes Complete Object
Creation, 3D Model Extraction, Extraction of visual
features, Text generation, Building Localization, and
extraction of textual features.

KUL, CERTH,
UPF

Non-semantic data
storage

Stores non-semantic data such as 3D models, videos,
data retrieved by crawlers, images, and others.

CERTH

Semantic data
services and
storage

This module encapsulates the semantic data services
and storage, including statistics-based, rule and
knowledge-based solutions to support deeper and more
robust analysis of textual content. Existing experimental
reasoning frameworks will be extended to support
sophisticated interpretation tasks for managing
incoming information and for retrieving information
pertinent to the users’ needs.

KUL, UPF,
CERTH

D6.1 – V1.0

Page 16

Web & Social
Media Crawlers
and DB wrappers

V4Design crawlers will build upon CERTH’s domain-
specific search and social media tracker that has been
deployed in several projects and is based on robust and
mature open source technologies, such as Apache
Nutch. This module also includes the development of
data wrappers that integrate 3rd party databases.

CERTH, EF

Table 2: General service-oriented modules of V4Design platform

The early concept of the architecture design considers how these modules interconnect and
collaborate to support the processes that V4Design aims to bring to life. The following Figure
2 represents this early version of the platform architecture design. It envisions the use of a
Message Bus as a main component of the platform’s middleware, to which all modules
connect to send and receive messages from other modules. The user tools are integrated
with a backend component that i) facilitates the data queries and consultations that the user
wishes to execute, and ii) streamlines the processes required to respond to the user
interaction. The user requirements will be implemented in the user tools and supported by
the rest of the system.

The system data are classified in two general categories: semantic data and non-semantic
data, and for each data type, a series of tools is associated. The semantic data services and
storage module (shown in the upper-right section of the diagram) groups the services that
organize, store and provide semantic data, while the non-semantic data storage module
(located below the semantic data services and storage in the diagram) stores and provides
non-semantic data. The web & social media crawlers and database wrappers module
(bottom-section of the diagram) is responsible for acquiring the raw data that will be
processed by the system. The data analysis and processing modules takes charge of this
responsibility.

Currently, there are no products/tools that combine the series of services and analytic
functionalities that V4Design plans to integrate. Therefore, the integration approach should
take into consideration the flexibility required in early-stage application development, by
adopting a simple, extendable and largely generic model of integration. Accordingly,
middleware services and components are grouped into modules based on how close they
interact with each other directly, and the overall capacity expected from their integration.
Also, in this grouping we take into account the type of data generated, exchanged,
processed, and stored. The objective of this grouping is to explore the possibility or the need
of tightly integrating the components of each module into a single service from a platform
architecture viewpoint. Additionally, this grouping helps to simplify our analysis of the
architecture requirements as it encourages a standardisation in the definition of similar and
complementary components.

According to this definition, the services grouped into a single module can communicate
with the message bus either through a single interface, or through different instances of the
same interface object. Using a single interface (for instance, in the case of Non-semantic
data storage, which in face encapsulates different databases and sources) facilitates the
execution of “parallel” tasks and to some extent chained tasks that involve more than one of
the encapsulated services. On the other hand, encapsulated services may use different
instances of the same interface to communicate with the message bus (for instance, in the

D6.1 – V1.0

Page 17

case of the user tools, each can operate its own interface), which is useful in case of
distributed module architecture. In this case, the message bus will register each interface as
an independent point of communication.

Figure 2: Early version of V4Design architecture design

From an architecture stance, these modules are considered as self-contained components
that could integrate several services and different functionalities, but respond and act in the
integrated system as a single unit. We group similar services and complementary services
into single modules. In the architecture design, peer-to-peer communications between
modules are minimized and restricted to data retrieval by URI associated to data queries. All
modules notify the message bus when their availability or status changes in order to adjust
message routing and inform other concerned modules. Additionally, the modules monitor
the availability of related services through the message bus. For instance, the user tools may
disable functionalities in case the related middleware was offline.

Accordingly, we build a high-level integration model that shows how the modules
communicate through a central message bus. Limited interaction between user tools and
modules with data storage can be supported. This is shown in Figure 3.

D6.1 – V1.0

Page 18

Figure 3: Module-based abstraction of the architecture design

Figure 4: Encapsulation of the architecture components

D6.1 – V1.0

Page 19

Based on this approach, we refined the original design of the application architecture to
define more abstract modules. This is an abstraction of the early design concept as shown in
Figure 4.

In Table 3, we describe how each of these modules interacts with the message bus according
to its overall role in the integrated architecture and the technological objectives of the
project.

Module Message bus integration

User tools Sends petitions and queries according to the user interaction, receives
responses to queries, including data retrieval responses with URIs.

Data Processing
and Analysis

Receives petitions for analysis (upon new data arrival), and user-
related requests for data processing.

Non-semantic data
storage

Receives user queries for retrieval. Responds with data URIs. Notifies
the system when new data is imported via crawlers or wrappers.

Semantic data
services and
storage

Receives petitions for semantic analysis, and queries for semantic
information stored in the knowledge base. Responds with data URIs,
and light semantic information can be integrated in the message
content.

Web & Social
Media Crawlers
and DB wrappers

Will not be integrated with the Message Bus. The non-semantic data
storage will notify the message bus when new data becomes
available.

Table 3: Relationships between modules and the message bus

In the following chapter, we discuss each architecture module in more details, defining and
describing its elemental services and the manner by which they integrate and operate in the
system architecture. This definition is based on a detailed inquiry conducted to define these
components as “black boxes”, integrated within the overall architecture. The architecture
design is consequently revised and refined afterwards.

D6.1 – V1.0

Page 20

4 DESCRIPTIONS AND FUNCTIONALITIES OF THE V4DESIGN
PLATFORM COMPONENTS

The following components constitute the main modules of the V4Design architecture. Each
component describes an independent service with a specialized function in the overall
system. Some acquire data, others extract features, some cast or format data objects, some
provide support for user-oriented functions, and some are user-oriented tools.

We describe each component according to its overall role in the V4Design platform, focusing
on the functionalities that it supports and the capacities it brings forth. In addition, we list
the expected development milestones and discuss shortly the relationship between the
component and the rest of the components from an integration perspective.

4.1 The V4Design user tools

The user tools are a set of applications designed to service different user profiles and
provide functionalities to professionals based on the value generated through the analysis of
data. They are mainly concerned in retrieving processed data and assets from the system.
They manage the system users independently from the rest of the platform

4.1.1 The Rhino Design Tool for architects

General description: The V4Design for Rhino project is a plugin for the Rhinoceros 3D
software platform developed by Robert McNeel & Associates. Rhino is typically used by
design professionals to produce 3D models of objects, spaces, buildings, urban
environments, etc. Rhino includes accurate Non-uniform rational basis spline (NURBS) as
part of its geometry kernel, and thus, the models produced are useful for fabricating
accurate physical representations of the 3D models. Due to this, Rhino is used by architects
to produce 3D models of their building designs.

Rhino users can extend its default functionality by creating plugins with the various public
APIs provided by Robert McNeel & Associates. A plugin is a compiled dynamic link library
(DLL) that is loaded by Rhino. Plugin functionalities can be presented to the user in various
formats, including as an additional command to be entered through Rhino’s command line,
or as a graphical user interface (GUI) hosted in a window dockable to the Rhino interface.

Robert McNeel & Associates develops public APIs in several languages
(http://developer.rhino3d.com/api/) including C++, .NET, Python, VBScript, RhinoScript, the
.NET RhinoCommon API will be used to develop the V4Design for Rhino. RhinoCommon has
been selected as the API due to: team expertise and general adoption of .NET in developer
communities. The latter is an important point, as the plugin will be developed as an open
source initiative and community contributions should not be limited by the learning curve of
the language.

The V4Design for Rhino plugin will present the Rhino user with a GUI capable of querying the
V4Design asset repository. The user will be able to search for V4Design assets by a host of
asset metadata such as asset location, asset type (3d model, image, etc.), and other relevant
metadata. Once the query has been entered, the results of the query will be presented to
the user through the V4Design for Rhino GUI. These results should include a graphical way to

http://developer.rhino3d.com/api/

D6.1 – V1.0

Page 21

review the results, including a thumbnail image of the asset, textual description of the asset,
and any other relevant data that can be useful to the user when selecting an asset from the
query results. The user will then be able to introduce this asset into the Rhino modelling
environment for further interrogation, manipulation, etc.

Within the Rhino interface (Figure 5), the V4Design for Rhino plugin will be presented as an
interface panel alongside other existing panels, which ship with Rhino, such as the Layers
and Properties panels on the right side of the interface. Within this panel, a GUI will be
developed in HTML5, JavaScript, and CSS to ensure portability to other platforms.

Figure 5: Rhinoceros 6 User Interface

Input: Search query via keywords, location, tags, and other relevant search filters.

Output: Relevant assets from the V4Design Asset Repository

Development milestones: The V4Design for Rhino plugin is currently in-development. Its
expected milestones are the following:

● [M12] First version: Basic operational version with ability to query the V4D Asset
Database or dummy database with keyword queries. Results are displayed to the
user as thumbnails of the retrieved assets and some basic information. User can
introduce the retrieved asset into the authoring tool.

● [M18] Second version: Development of query capabilities, including the addition of
filtering by tags, location, asset type, etc. App queries the real V4Design Asset
Repository (instead of a dummy repository).

● [M26] Third version: Development of review capability, allowing the user to be able
to add a small review of the asset. This data will be attached to the asset in the
V4Design Asset Repository.

● [M34] Final version: Fully developed query capabilities, review and further
personalization based on user preferences (keeping a catalogue of retrieved assets).

D6.1 – V1.0

Page 22

Integration: Since the V4Design for Rhino plugin needs to query the V4Design asset
repository, it will access the asset metadata through the V4Design REST API. The V4Design
for Rhino plugin therefore communicates exclusively with a backend service (the V4Design
REST API) in order to query and retrieve assets from the V4Design asset repository. Since the
V4Design for Rhino plugin is only interested in asset querying and retrieval, it need not
intervene in the asset production facilities of the V4Design platform, and thus, does not
need to communicate with the message bus.

4.1.2 The NURO VR Authoring tool

General description: The authoring tool for VR game development will be based on Unity
Engine for game development. Unity3D (www.unity3d.com) is a cross-platform game engine
primarily used for development of 2D and 3D games. Unity is the most used game engine
and is available for free to the community. Games on unity can be developed using C# and
other design tools included in the software. Games for 27 different platforms, such as iOS,
Android, Windows, PlayStation, Xbox as well as VR devices such as Oculus Rift, Google
Cardboard, Steam VR, PlayStation VR, Gear VR, windows Mixed Reality as well as Daydream
can be developed using Unity.

The NURO VR Authoring tool will use the native functionalities of Unity but will add various
new functionalities to author VR games and use of V4Design repositories to extract assets
and 3D models for the games. Acting as a plug-in of Unity, a new tab will be added in the
Unity, which will be connected to the V4Design Backend tool.

Figure 6: Unity3D Editor screenshot

Figure 6 shows a sample editor screen of Unity, which has tabs of the Game, Scene,
Hierarchy, Inspector, Project and Console. Similar to this, another tab will be included, which
will use the interface of the V4Design Backend Tool to show the repository of assets
available for the users. The tool will be developed on C# and will use the APIs provided by
Unity to integrate into the editor. Apart from this, the tool will provide new functionalities to

http://www.unity3d.com/

D6.1 – V1.0

Page 23

the users to easily create VR environments, test them and produce gaming elements with
pre-defined designs.

Input: Search query via keywords, location, tags, and other relevant search filters.

Output: Relevant assets from the V4Design Asset Repository

Development milestones: The Authoring tool is currently in-development. Its expected
milestones are the following:

● [M12] First version: This version will include the integration with Unity, ability to
query from V4Design repository and import 3D model into the scene. Moreover, this
will include the easy ability to change the year of a particular model and change the
years inside the VR application.

● [M18] Second version: The second version will include the ability to export VR game
using a specific environment along with various game features and interactions.

● [M26] Third version: The third version of the VR authoring tool will include all the
requirements from the users, results of the evaluations from V1 and V2 and will be a
pre-final version.

● [M34] Final version: This version will include all the bug fixes and the feedback from
the users and packaged along with the V4Design product.

Integration: Follows exactly the same paradigm described for the Designer tool.

4.1.3 The V4Design REST API for user tools

General description: The V4Design REST API provides the functionality necessary for front-
end applications to query and retrieve assets from the V4Design Asset Repository. The
RESTful API will provide specific calls to query the Asset Repository through any number of
metadata fields, such as asset type (3D model or image), asset date, asset quality, and any
other relevant fields that would help to filter the available assets. Specifically, the V4Design
REST API connects to the database in charge of managing the Asset Repository objects
without needing to go through the V4Design Message Bus system.

The V4Design REST API will be designed to meet Open API Specification [OAS]
(https://github.com/OAI/OpenAPI-Specification) criteria, including utilizing specific query
and response formats for the different calls and responses. To facilitate this, the API will
utilize Swagger (https://swagger.io/), Apiary (https://apiary.io/), or similar as a framework
for designing, developing, documenting, and deploying the API.

This API will be utilized by both the V4Design front end user interface for Architects and
Video Game designers (Rhino3D and Unity plugins). Each of the application plugins will
present the user with an interface to enter in any query filters relevant to the assets
produced by the V4Design system. Once the filters have been entered, the application will
format an API call and transmit this to the API endpoint. The endpoint will respond with a list
of potentially relevant assets based on the query filters. The front-end applications can then
be programmed to respond appropriately to the user by presenting the results, and
eventually making the results available for download.

Input: User petitions and queries

https://github.com/OAI/OpenAPI-Specification
https://swagger.io/
https://apiary.io/

D6.1 – V1.0

Page 24

Output: V4Design system queries and data retrieval requests

Development milestones: This component is currently a concept, its expected development
milestones:

● [M12] - Basic operational prototype that allows querying the V4Design Asset
Repository and receiving results based on the available content.

● [M18] - Query and Result calls to be further developed. Starting the documentation
process.

● [M26] - Query and Result calls to be further developed.

● [M34] - Final functionality and documentation complete.

Integration: This service will communicate directly with the database system in charge of
managing the V4Design Asset Repository via a RESTful API, adhering to the Open API
Specification. Its communication with the message bus is minimal (authentication of
services).

4.2 Data processing and analysis tools

The set of data processing and analysis tools mainly deals with non-semantic analysis of
acquired data, focusing on data formatting and data extraction, and data classification
mechanisms that implement the V4Design approach.

4.2.1 The Spatio-Temporal building and object localization (STBOL) service

General description: Spatio-Temporal building and object localization in images and video
frames service aims to detect buildings and some of their basic elements (i.e. type of
window, door, roof, decoration, facade, etc.) from images or video frames. The end-user will
give to the system images or videos and it will return masks of frames having bounding
boxes that include buildings and some of their basic elements.

Building and interior elements localization will be applied on art and architecture-related
movies, documentaries and multiple art-images, aiming to localize the exteriors of buildings,
and outdoors spaces. For these purposes, scene recognition and image segmentation
algorithms will be applied in history or modern city architecture movies and documentaries
so as to localize modern and historic cityscape environments. In this manner, sub-sequences
containing building exteriors and cityscape environments of interest to designers (video
game creators, architects), can be extracted from collected video content, repurposed and
reused in a meaningful and innovative way.

This service will store and update the localization models that will be used to understand the
objects and architecture elements that exist in the provided videos and images. More
specifically, we foresee the construction of two localization models: (i) one for the
identification of buildings and other outdoors elements, (ii) one for the detection of
architecture objects and other elements that exist in interior spaces.

Input: Images, video frames and other assets.

Output: Object and building boundaries in images and video frames.

D6.1 – V1.0

Page 25

Development milestones: This service is currently under development and will be delivered
according to the following milestones.

● [M6]: Initial version of the basic STBOL component is released

● [M12]: Service will be integrated in the platform and message bus

● [M16]: The basic version of the algorithm will be delivered

● [M20]: The component will be integrated in V4Design system 1st prototype purposes

● [M26]: Integration with the second V4Design prototype.

● [M34]: Advanced version of STBOL component will be deployed.

Integration: This service will communicate exclusively with the database of the system.
However, it may connect to the message bus for authentication purposes and to receive
broadcast messages.

4.2.2 The Aesthetic Extraction and Texture Proposals (AE&TP) service

General description: The Aesthetic Extraction (AE) from paintings component aims to
extract and categorize the aesthetics of paintings based on their style (i.e. impressionism,
cubism and expressionism), creators and emotion that they evoke to the viewer. This service
will be used to categorize the acquired paintings and create an aesthetic gallery from where
an end-user could choose or be inspired from, in order to create novel architecture
structures or other artworks. The V4Design API will provide to the end-users the capability to
use keywords in order to search the knowledge base and acquire the aesthetics, style and
emotion of paintings, images and pictures of artworks that they want.

This component will analyse the acquired visual content from paintings and images of other
kind of artwork in order to extract geometry, style and other aesthetics aspects concerning
specific artwork collections. It will then provide it as metadata to the V4Design platform, and
artwork features so as be specified in measurable attributes, such as colour (RGB, HSV, etc.),
texture, image bumps, gradients, palettes, and patterns.

Texture Proposals (TP) from paintings and other artwork images will use the categorized
paintings by AE component so as to create novel aesthetics and style textures which will be
provided to architects and video game designers, within the aesthetics gallery, so that they
can create novel artwork and structures based on past observations and styles. For the
interface, the end-user will also have the possibility to give images to the V4Design platform
and the service will return a texture extracted from the paintings, images and other pictures
of artworks.

This service will store and update the aesthetics model that will be used to build the
aesthetics V4Design gallery. More specifically, we foresee the construction of three galleries
based on the aesthetics of the image (i.e. cubism, abstract, renaissance, etc.), painter (i.e.
Bernini, Picasso, etc.) and emotion induced in the viewer (i.e. fear, sadness, neutral, etc.).

Input: acquired visual content from paintings and images.

Output: Not yet defined.

D6.1 – V1.0

Page 26

Development milestones: This service is currently under development, with expected
delivery according to the following milestones:

● [M6]: 1st version of the basic aesthetics component is released

● [M12]: service integrated with the platform and message bus

● [M15]: The basic version of the algorithm will be delivered

● [M20]: The component will be integrated in V4Design system 1st prototype purposes

● [M26]: Integration with the second V4Design prototype.

● [M33]: Advanced version deployed.

Integration: The service does not communicate with other services since it takes and returns
messages from and to the database respectively.

4.2.3 The 3D-Reconstruction Service

General description: The 3D-Reconstruction service will be used to convert initial input data
into 3D point clouds and meshing. Input data will be initially analysed to determine
reconstruction suitability. The service will support multiple output formats. The entire
reconstruction pipeline is heavily resource demanding. Therefore, intermediate results will
be available in order to cancel a reconstruction process if they are not up to certain
standards. The service will distinguish data suitable for multi multiple-view reconstruction
(preferred method) and data suitable for single view reconstruction. The multiple-view
reconstruction (MVR) pipeline, being the most resource intensive, will be the one providing
intermediate results.

If a set of input imagery is determined suitable for 3D-Reconstruction a new reconstruction
object will be allocated. Any further command towards this service (e.g. ‘mesh calculation’)
will always reference a specific reconstruction object (by for example a unique ID).

This service will implement well-established 3D-Reconstruction algorithms based of several
available tools (colmap, theiasfm, visualsfm, opencv, etc.). The V4Design project will also
implement new research opportunities towards reconstruction of data unsuited for
traditional multiple-view reconstruction and these will be implemented in this service as
well.

The core of this service is expected to be implemented using the C# language (likely .net
framework 4.5+ or possibly .net core). Specific 3D-Reconstruction algorithms can be
implemented in several programming environments and languages like C++ and Python
(depending on prior research and available open source projects).

Input: Initially grouped images or video files. Data from visual understanding tool.

Output: 3D point clouds. 3D Mesh. BIM objects. Reusable texture.

Development milestones:

● [M12] Initial prototype. The service accepts suitable data and runs the initial
photogrammetry pipeline. Initial integration with message bus.

D6.1 – V1.0

Page 27

● [M20] Checks regarding reconstruction feasibility. Improved reconstruction pipeline
specifically regarding the multiple input of images and videos to a single
reconstruction. Output may be requested in various quality (vertex count) and
formats. Initial capabilities for alternative output like facades and reusable textures.

● [M28] Further enhancement and segmentation of output. Implementation of linked
data and initial acquisition of BIM objects.

● [M33] Final version of the reconstruction service. Improvements regarding
performance and scalability of the service.

Integration: The service works independently from other services and is concerned with the
availability of new data to process in the system. It will receive broadcast messages from the
message bus, and can access data directly.

4.3 Semantic data services and tools

The semantic data services centre on the extraction, classification and analysis of semantic
information that is related to the acquired visual and graphical assets. The complement
performs the analysis of these assets that aims to extract and process sharable or reusable
elements.

4.3.1 The KB Population service

General description: The Knowledge Base (KB) population service is responsible for mapping
the incoming information from the different V4Design modules to the RDF-based
representation format, based on the ontologies that will be developed. This involves the
development of vocabularies for capturing:

● The aesthetics extracted from visual content (i.e. images and videos) and the textures
generated in order to retrieve relevant artwork attributes (Aesthetics and Texture
extraction modules in WP3)

● The semantic relations (e.g. named entities, concepts and relations) extracted from
textual analysis, along with various properties, such as artists, year etc. (Language
analysis module in WP3)

● Buildings, interior objects and other content-specific attributes (e.g. landscapes,
architectural styles, etc.) that will be extracted from video and image analysis
modules (Object Localisation module in WP4).

The underlying knowledge structures will also provide all the necessary semantics needed to
generate textual descriptions and summaries for each asset (Language Generation module in
(WP5). The service will support different mapping services, according to the format of the
input that we will get from the other components, e.g. XML, JSON, etc. The service will be
also responsible for updating the KB with information coming from structured repositories,
such as the Europeana API.

Input: Analysis results of visual content (e.g. tags, building, objects, textures, aesthetics from
images and videos), concepts, entities and relations extracted from textual content.

Output: RDF-based representation format

D6.1 – V1.0

Page 28

Development milestones: The KB Population service is currently a concept, and will be
developed and delivered according to the following milestones.

● [M6]: The skeleton of the service will be available, e.g. a dummy service able to
receive and send messages to the bus, without any mapping functionality.

● [M12]: Basic mapping functionality will be available towards v1. This involves the
delivery of the mapping algorithms able to populate the KB with real results
generated by the current version of the V4Design components. The interaction with
the bus will be also implemented and tested, aligning the subscription mechanisms
to the events published by the analysis modules.

● [M20]: Fully fledged mapping service, supporting the full structure and content of the
outputs generated by the V4Design modules for v1. The mapping algorithms in M20
will extend the ones developed in M12, taking into account updates and refinements
made in the V4Design modules to address the technical and user requirements.

● [M28]: Necessary updates for v2, in line with the updated structure and content
provided by the analysis modules. This involves the update of the mapping
algorithms to support the richer inputs that will be provided by the components, as
well as to update the publishing and subscription mechanisms to the bus in order to
realise the communication with the other modules of the framework. Special focus
will be given on the semantic enrichment of the incoming information, e.g. by
including additional references to Linked Data resources.

● [M36]: Necessary improvements on the final system, according to the updates made
on the output (structure and content) provided by the other components. In the final
version the focus will be also given on the scalability of the mapping algorithms, as
well as on developing fall-back strategies when the incoming information is
incomplete. The possibility of a tighter interaction with the Reasoning service will be
also investigated, according to the need to incorporate some sort of reasoning in the
mapping process (this depends on the semantics of the input that will be provided).

Integration: This service will communicate with other components through the message bus.

4.3.2 Semantic Integration and Reasoning

General description: The reasoning service (WP5) will be responsible for further analysing
the knowledge captured in the Knowledge Base (KB). More precisely, the module will try to
build a unified representation of the available assets, taking into account information
relevant to texture and aesthetics (Aesthetics and Texture extraction modules in WP3),
named entities, concepts and relations extracted from textual analysis (Language analysis
module in WP3), as well as buildings, interior objects and other content-specific attributes
(Object Localization module in WP4). To this end, this module will develop the context-
aware reasoning and information coupling algorithms operating on top of the available
ontological knowledge built by the KB Population module (WP5), supporting the decision-
support aspects of the V4Design platform, according to the use case requirements that will
be defined. Overall, the reasoning process aims to derive facts and higher-level implicit
knowledge from information already generated by the aforementioned V4Design modules,
and asserted in the ontologies, preparing the information to be presented to the user.

D6.1 – V1.0

Page 29

Input: The information in the KB.

Output: Additional inferences in the RDF-based representation format.

Development milestones: This component is currently a concept, and its implementation
has not been started yet. It will be developed and delivered according to the following
milestones:

● [M6]: The skeleton of the service will be available, e.g. a dummy service able to
receive and send messages to the bus, without any reasoning functionality.

● [M12]: Basic reasoning functionality will be available towards V1. This involves the
development of the rule-based reasoning framework able to combine existing tags
and generate high-level concepts, semantically enriching the captured context.

● [M20]: Reasoning functionality aiming to address the V1 requirements. This involves
the extension of the reasoning framework developed in M12 with advanced
multimodal information fusion and content aggregation techniques to generate
higher level conceptualizations for content repurposing. A hybrid reasoning scheme
of Description Logics and rule-based reasoning will be investigated.

● [M28]: Necessary updates for V2, based on the evaluation of V1 and the new input
provided by the other modules. In addition, the reasoning framework will be further
enriched with non-monitoring capabilities, addressing challenges relevant to content
disambiguation and handling of conflicts, e.g. in the case when conflicting
information is received from different modules.

● [M36]: Necessary updates for the final system. Improvements on the scalability will
be investigated, while similarity measures will be implemented for advanced Linked
Data resource linking and approximate reasoning (e.g. to define clusters of relevant
assets)

Integration: The Semantic Integration and Reasoning service will communicate with other
services, namely the KB population, via the message bus.

4.3.3 The TALN Language Generation service

General description: The language generation module is in charge of generating textual
reports, descriptions, or summaries, starting from data extracted from text, webpages,
and/or visual analytics. It starts from abstract representations, modelled, e.g., as RDF triples,
which are stored in a semantic repository. LG follows a request for a summary of most
relevant contents related to a specific keyword (or entity), or comes along a generated 3D
model. Starting from the repository that contains the extracted contents from the
documents processed by the analysis modules, the following sequence of actions is
performed:

● text planning identifies contents related to the queried entity, assesses their
relevance relative to this entity, and produces an ordered sequence of linguistic
predicate argument;

● linguistic generation starts by transferring the lexemes associated to the semantics
structures to the desired target language;

D6.1 – V1.0

Page 30

● the structure of the sentence is determined;

● grammatical words are introduced;

● all morphological agreements between the words are resolved;

● the words are ordered and punctuation signs are introduced.

As for analysis, we follow a pipeline approach based on a theoretical model being the
Meaning-Text Theory.

Input: data extracted from text, webpages, and/or visual analytic

Output: textual reports, descriptions, or summaries

Development milestones: This component is currently in development and will be delivered
according to the following milestones:

● [M12]: Operational prototype. Generation of a few sentences from ontological
representations will be supported in English. Some basic summarization techniques
(e.g. extractive summarization) will be implemented for handling possible textual
inputs.

● [M16]: Basic summarization techniques. The generator starting from ontological
structures will be adapted to one or two more languages, and its coverage will be
increased (all depending on the UC requirements). A first version of the ontology-
based text planning will be setup and connected with the generator.

● [M34]: Final summarization techniques. The ontological generator will handle all
V4Design languages (English, Spanish, Greek, and German) and cover all UCs, and will
include statistical sub-modules when needed. The advanced version of the text
planning module will be released, which will aim at optimizing the relevance and
coherence of the summaries. Efforts will be dedicated to ensure the reusability of the
developed tools outside of V4Design.

Integration: The TALN Language Generation service will communicate with the other
platform components through the message bus.

4.3.4 The TALN Language Analysis service

General description: The Language Analysis module addresses the analysis and capture of
the natural language textual material into structured, ontological representations, so that
appropriate system responses can subsequently be inferred by the reasoning module
(CERTH), and that textual summaries can be produced (TALN-Language Generation). The
module combines multilingual dependency parsers and lexical resources, and a projection of
the extracted dependency-based linguistic representations into ontological ones. The
analysis pipeline comprises the following sub-modules:

● Tokenization: identify the token boundaries;

● Part-of-speech tagging: assign grammatical categories to tokens (noun, verb, etc.);

● Lemmatization: determine base form of tokens (built -> build);

D6.1 – V1.0

Page 31

● Word Sense Disambiguation, Entity linking: assign particular senses or referents to
tokens;

● Surface-syntactic parsing: assign grammatical relations between tokens

● Deep-syntactic parsing: assign predicate-argument relations between meaning-
bearing tokens (first argument, second argument, etc.)

● Conceptual relation extraction: map to language-independent abstract structures.

The V4Design text analysis framework adheres to a multi-layer paradigm: starting from the
input texts, representations of higher abstraction are successively obtained, until the
underlying semantics are distilled in a formal and language-independent manner that allows
for automated reasoning and interpretation.

Input: Textual material from reviews, image captions, etc.

Output: JSON file with syntactic and semantic annotations on top of the sentences.

Development milestones: This component is currently in development, its expected
milestones are the following:

● [M12]: Operational prototype. The language analysis pipeline, with all the
aforementioned components, will be able to output language-independent
representations starting at least from English, for a limited set of input sentences.

● [M18]: Basic version of multilingual text analysis. The analysis pipeline will be
operational for at least three languages, and its coverage will be improved according
to the specifications of the different UCs. The quality of the outputs will be
evaluated.

● [M33]: Final version of multilingual text analysis. The analysis pipeline will have an
improved coverage and will be able to handle all the V4Design languages (English,
Spanish, Greek, and German). Efforts will be dedicated to ensure the reusability of
the developed tools outside of V4Design.

Integration: This component will also utilize the message bus in its communication with the
rest of the system.

4.4 The data storage and retrieval tools

The data storage and retrieval system of the V4Design platform groups all databases, data
wrappers, connectors, and other low-level data manipulation modules.

Visual content will be acquired from renowned film producers and distributors like DW, EF,
AF, and SLRS, and be complemented with visual artwork that will be crawled and scrapped
from public digital archives. Textual content related to the visual content of interest will be
also retrieved from public databases in order to enhance the digital information that will be
provided to the users.

Crawling and scraping and data wrapping modules will extract freely-available textual and
visual content from open resources on the web, including social media. This data will be
repurposed in the context of V4Design. Data wrappers will be developed based on existing
3rd-party APIs (e.g. twitter, Facebook) to collect content based on queries automatically
formulated by machine learning techniques.

D6.1 – V1.0

Page 32

Data acquisition will be complemented with collections of paintings, pictures of other
artwork and the relevant metadata from the Europeana’s repository of records. This will be
done mainly by accessing Europeana Collections and the Europeana API. Data selection and
extraction will take into account the associated licenses (open data) in order to ensure
compliance with the legal frameworks of the project.

Storage modules will store all the structured and unstructured data of the system, including
raw data that has been extracted by crawling or scrapping, and provides search and retrieval
capacities to the entire system. Storage modules currently include a storage for non-
semantic data (3D objects, styles, textures, etc.) and another storage for the knowledge
generated by semantic analysis (mainly from the semantic integration and reasoning, and
the TALN language analysis services). These two storage modules are virtually independent,
and each communicates with a distinct set of services. They can be hosted as two separate
and independent components. For the first phase of the project, and until these modules are
developed and become available as experimental prototypes, we group them under the data
storage and retrieval system in order to standardize their relationship with the rest of the
platform in parallel.

Data should start to be available in the system from M5 onwards.

Storage modules will send a notification to the message bus when new data is available. This
broadcast will entail the activation of the analytical services that will process this new data
accordingly.

D6.1 – V1.0

Page 33

5 TECHNICAL SPECIFICATIONS OF SERVICES AND COMPONENTS

The design of distributed systems is a complicated endeavour because it entails many
decisions that could impact the architecture scalability and performance on the long run.
Therefore, understanding the specifications of the intended architecture design is critical
before engaging the design and development of its integrated components. This starts by
defining component-level specifications, and then addressing specifications on the level of
the platform in which components are considered and treated as black boxes.

Name Acronym Owner Status Function

V4Design REST
API

REST API NURO Concept Query the V4Design Asset
Repository with a user
defined list of filters.

KB Population
service

KBPopulation CERTH Concept Mapping incoming
information from different
components to the RDF-
based representation format.

Semantic
integration and
Reasoning

Reasoning CERTH Concept analysing the data generated
by the various V4Design
components

3D-
Reconstruction
service

3D-
Reconstruction

KU In development Convert initial input data into
3D point clouds and meshing

TALN Language
Generation

TALN-LG TALN In development Generating textual reports,
descriptions, or summaries,
starting from extracted data.

TALN Language
Analysis service

TALN-LA TALN In development Analysis and capture of the
natural language textual
material into structured,
ontological representations

NURO VR Tool NURO VR NURO In development Tool used by game designers
to create virtual
environments by reusing
assets.

V4Design for
Rhino

Rhino McNeel In development Used by design professionals
to produce 3d models of
objects, spaces, buildings,
urban environments, etc.

Spatio-Temporal
building and
object
localization

STBOL CERTH In development detect buildings and basic
elements of them (i.e. type of
window, door, roof,
decoration, facade, etc.) from
images or video frames

D6.1 – V1.0

Page 34

Aesthetic
extraction and
texture proposals
service

AE&TP CERTH In development Extract and categorize
aesthetics of paintings based
on their style, creators and
emotion.

Data storage and
retrieval system

DS CERTH In development Stores all data objects
pertinent to the system and is
accessible from other
components for querying and
storage.

Table 4: Summary of V4Design architecture components

Before delving into the details of the technical specifications, we summarize the components
of the architecture as previously defined in this document in Table 4.

Arguably, the most important aspect of technical specifications for these architectures is the
manner by how its components will communicate and share data. In the case of V4Design,
the fact that most architecture components are considered as standalone applications and
that a distributed cloud-based architecture is contemplated, simplifies the requirements
analysis for the system. It no longer needs to address the specific functional and non-
functional specifications of the components leaving these concerns to be addressed at the
level of component development, integration or adaptation. This will be explored in depth in
the context of D6.2, which will detail the technical requirements of each module as well as
those pertaining to the implementation of the V4Design platform. In D6.2, we will expand
our definition of the functionalities that will be supported by the platform and will finalize
the system architecture design that will be used for the implementation of the platform
prototypes.

In the context of the implementation roadmap, we centre our analysis mainly on the
following concerns:

 How will the architecture be distributed so as to accommodate all the envisioned
system components?

 How the architecture will support communication between these components?

 How will data be stored, managed and shared amongst the components?

 How to define and address more generic concerns, such as performance, scalability
and flexibility of the architecture?

Not all of these concerns are currently tackled, especially for components that are still in
early stage, having flexible specifications that loosely depend on the outcomes of
experimental prototypes and use cases. Nonetheless, the information collected so far has
provided a meaningful overview of the intended components and identified several
concerns that need to be addressed prior to the implementation and deployment of the first
prototype.

In the following section, we will summarize the basic and advanced specifications of the
components as described by their owners.

D6.1 – V1.0

Page 35

5.1 Basic specifications of platform components

The basic specifications of the modules describe in a general sense the deployment
environment, the development framework, the expected capacity and the expected
availability and reliability of each component are summarized in Table 5.

Component Deployment
environment

Development
Framework

Expected
capacity

Expected availability
and reliability

3D-
Reconstruction

Windows 10,
additional
hardware
requirements
expected
after testing

Visual studio 2017,
C++ , C#

Very susceptible
towards request
image/video size
and needs
further
experimenting

100%. If service
saturates, then new
requests will be put
on hold

Reasoning windows 10,
5-6GB

Java Linear, can only
process one
request at a
time

The service will be
available at any time

KBPopulation windows 10,
2-3GB

Java Linear, can only
process one
request at a
time

The service will be
available at any time

AE&TP Linux, GPU
(more than
8G memory)

Python, Tensorflow,
Keras

Linear, can only
process one
request at a
time

Depending on status,
is not available while
executing a request

STBOL Linux, GPU Python, Tensorflow,
Keras

Linear, can only
process one
request at a
time

Depending on status,
is not available while
executing a request

REST API Linux or
Windows
Server

MacOS / Windows,
node.js, Swagger or
Apiary

Largely
dependent on
the server
resources.

The service will be
available at any time

Rhino Windows 10,
MacOS
10.13.x

Windows 10,
MacOS 10.13.x,
Visual Studio 17,
.NET Framework
4.5, C#, ECMAScript,
CefSharp,Vue.js

Determined
during
functional
testing, no
bottleneck
expected.

The service will be
available at any time

NURO VR Windows 10,
MacOS
10.13.x

Windows 10,
MacOS 10.13.x,

Determined
during
functional
testing, no

The service will be
available at any time

D6.1 – V1.0

Page 36

bottleneck
expected.

TALN-LG Docker
(preferably on
Linux), 5GB
RAM
(estimation)

Java, C++, Python,
Graph-transduction
grammars

Determined
during
functional
testing, no
bottleneck
expected.

The service will be
available at any time

TALN-LA Docker
(preferably on
Linux), 10GB
RAM

Java, C++, Python,
Graph-transduction
grammars

Determined
during
functional
testing, no
bottleneck
expected.

The service will be
available at any time

DS Not yet
determined

Not yet determined Determined
during
functional
testing, no
bottleneck
expected.

The service will be
available at any time

Table 5: Basic specifications of components

5.2 Advanced specifications of platform components

The advanced specifications of the components address their relationship with other
platform components and how they manage data. In particular, we discuss the local data
storage policy, the interoperability requirements, the security model and the scalability of
each component.

Component Local Data storage Interoperability
requirements

Security model Scalability

3D-
Reconstruction

Needs agile access
to data, and may
store instances of
data locally for
processing.

N/A Access to 3D
reconstruction
service is limited to
only V4D services

Horizontal scaling
possible if service
is deployed on
multiple
machines

Reasoning The service stores
new knowledge in
the KB (RDF triple
store).

RDF model
(reads and
stores data in
this format)

Basic authentication
(username/password)
can be supported

Not yet
determined

KBPopulation The service stores
data in the KB (RDF
triple store)

The data to be
stored in the KB
needs to follow
the RDF data
model

Basic authentication Not yet
determined

D6.1 – V1.0

Page 37

AE&TP Stores locally and
updates the
aesthetics model
used to build the
aesthetics V4Design
gallery.

N/A No access protocol is
currently envisioned.

The number of
requests and the
processing time
are linearly
dependent

STBOL Stores locally and
updates the
segmentation
model used to build
V4Design gallery.

N/A No access protocol is
currently envisioned

The number of
requests and the
processing time
are linearly
dependent

REST API stores
authentication keys
locally

Specifications
for the
database
system and
V4Design Asset
Repository

Not yet determined This service
would scale
horizontally and
vertically

Rhino stores retrieved
assets locally if the
user has
implemented the
asset into a Rhino
model

N/A Depends on the REST
API authentication
paradigm

Horizontal and
vertical scaling
possible

NURO VR stores retrieved
assets locally if the
user has
implemented the
asset into a Rhino
model

N/A Depends on the REST
API authentication
paradigm

Horizontal and
vertical scaling
possible

TALN-LG No local storage N/A Relies on the
message bus security
for communication.

Horizontal and
vertical scaling
possible

TALN-LA No local storage N/A Relies on the
message bus security
for communication.

Horizontal and
vertical scaling
possible

DS N/A Data format
and request
format

Not yet determined Horizontal and
vertical scaling
possible

Table 6: Advanced specifications of components

5.3 Platform-level technical specifications

The way the defined services are integrated into a coherent platform that provides and
supports the functionalities envisioned in V4Design requires further investigation. In fact,
some related concerns cannot be resolved before the development of current concepts into
experimental prototypes, as shown in the previous sections. This is expected to happen

D6.1 – V1.0

Page 38

between M6 and M12, and therefore the roadmap for the development of the V4Design
platform identifies current ambiguities and provides a strategy for their resolution, taking
into account the major technical milestones of the project, and its implementation plan. This
is discussed in the following.

Ideally, the internal organization of the V4Design architecture follows a well-defined pattern
that separates between user-oriented tools, middleware components, services, and data
storage and retrieval. This organization helps to standardize the way the platform is
integrated and expanded in the future to accommodate more services or replace services
with more advanced ones. This standardization helps to guarantee a healthy evolution of the
platform towards a market-ready enterprise application.

In the following diagram (Figure 7), we show an envisioned conceptual design that
implements this standardization.

Figure 7: V4Design envisioned conceptual design

5.3.1 Data management and storage concerns

Data is a critical aspect of the V4Design platform, which aims to support and process
different types of data objects in different degrees of construction, from the basic raw data
to more complex and composite objects that respond to the needs of the envisioned user
experience.

Therefore, we will accord a special attention to the data management and storage policy in
the platform, taking into account the expected level of maturity required at the end of the
project. For experimental purposes and in the context of early prototypes, direct integration
between services on the one side and data storage and retrieval components on the other
would be expected.

D6.1 – V1.0

Page 39

As the platform development progresses, we expect to migrate into a more centralized
architecture model in which local storage of data is reduced, and communication between
services and global data storage is standardized and mediated by the message bus. In this
mature model, components and services will maintain direct access to the data (as data will
not be channelled through the platform message bus), but will do so in an organized way
that allows monitoring and control to the extent required.

5.3.2 Local storage policy

Components and services of the V4Design platform can store data locally according to the
following requirements:

 Local Data: data only relevant to the component and not required nor accessed by
other platform components and services.

 Data Queues: services and components can implement data queues if needed to
streamline the data streams locally.

 Control Data: including logs, buffers or any metadata storage to support local
functionalities and improve performance.

The platform components and services should take care not to safeguard any data pertaining
to the platform locally, longer than needed, for data security and access concerns, as well as
to support an overall centralized model of data storage and retrieval for the platform.

5.3.3 Data access and querying policy

The data storage and retrieval system will be accessible to all authenticated platform
components, which can execute queries on the data, and store the output of their local
processes without intervention from other components.

For instance, the responsibilities of the V4Design REST API component include orchestrating
data queries and retrieval according to the users’ input. It connects with the data storage
and retrieval system, and acquires the data pertinent to the user query. This data may be
distributed among different components of the data storage and retrieval system, which will
not support composite queries. Instead, the V4Design REST API will query each of the data
storage components separately (e.g. storage of 3D objects, and Knowledge Base).

5.3.4 Availability and scalability of services

The services of the V4Design platform are designed to work independently of the user-
oriented functions. These are encapsulated by Rhino and NURO VR and mainly access and
retrieve data from the system. They do not trigger any service explicitly, instead the services
work in an ad-hoc manner, preparing the data and analysing it as it becomes available.
Therefore, in principle, there is a disjunction between the services and the user tools.
However, as the platform scales and its users multiply, we expect the data needs to follow a
similar trend, and in this context the availability of services becomes relevant. In addition,
we do not wish to disregard a tighter relation between the user tools and the services, since
it is possible to consider a dynamic processing of data (under user request) in the future.

D6.1 – V1.0

Page 40

For these reasons, and due to the fact that several services have limited capacity as
envisioned (can only process one request at a time, and are unavailable during processing),
we recommend the following items as part of the platform specifications for availability:

 Each service with limited availability, or with a low saturation threshold, should
implement a queue to receive and store incoming requests in order to process them
sequentially.

 The scalability of these services should be addressed as part of the development
efforts for its final version. This could include the introduction of (or at least support
for) parallel processing or the deployment of several instances of the service.

5.3.5 Platform security concerns

Security concerns are an important aspect of enterprise applications, especially in
distributed architecture. The platform has to insure the security of the data it acquires and
generates, in addition to protecting the user data. There are several levels in which security
should be addressed. First, on the level of individual components; second, on the level of the
servers that constitute the distributed architecture; third, on the level of the architecture
middleware, namely the message bus; and fourth, on the level of the user tools.

 Component-level security: the security policy adopted by each component and
service should be defined and included in its requirements and specifications, and
documented in D6.2 for reference. The objectives of such policy would centre on
preventing data leaks, and unwanted and uncertified access to the component.
Special care should be accorded when integrating or connecting with third-party
applications, and in choosing the adequate development framework. In addition,
security should be one of the determining factors in choosing libraries and external
components for the development.

 Server-level security: The security of the servers integrated in the platform
architecture should be addressed early on in the development process. Access to the
servers should be controlled, and the servers protected according to common
practices. This includes addressing risks of hacks, denial-of-service attacks, and other
common security hurdles. Earlier versions of the servers could address security
lightly, but final versions should contemplate security in a more comprehensive
manner.

 Architecture-level security: in addition to dealing with the security concerns on the
component and server levels, the architecture middleware should authenticate the
services and monitor their health in a bid to add an extra layer of security to the
entire platform. Platform security can be centralized to a large extend, alleviating
service authentication and trust concerns.

 User-tools security: the user tools represent the user interface of the platform, and
therefore should be responsible for addressing user-oriented security concerns.
These mainly include the authentication of users and the prevention of malicious
behaviour, which will be addressed by these tools.

D6.1 – V1.0

Page 41

These security aspects will be addressed in the development and integration of the V4Design
platform in order to insure the level of service quality, stability and performance expected at
TRL6-7.

5.4 Communication and messaging

As early concepts, most of the services do not yet envision organizing their interaction with
the rest of the platform component through the platform middleware in a complete
manner. The integration between all of the platform’s components and the message bus will
be considered in order to achieve the required level of security, consistency, stability, and
service quality associated with TRL6-7 levels, implying a healthy performance in a real-world
environment without customization according to the environment’s characteristics (or
implemented use case).

In Table 7, we compile the current message interaction of the platform, listing the messages
defined that the services send and receive through the message bus. These will be expanded
further and completed before the integration of the first prototype architecture.

Sender Event name Description Message type /
topic

Message
receiver(s)

3D-
Reconstruction

Photogrammetry
Update

Update towards
photogrammetry object
(new, pointcloud
completed, mesh
completed, etc.)

Photogrammetry
Update, Any
service requiring
3D models

Broadcast

 setData remote method to
upload data to the KB

analysis results
from various
modules

KBPopulation

DS New data
available

When new data is
stored in the DB, the
message bus notify
Localization to update
the outdoors and
indoors models that it
already contains.

New data
available

Localization

KBPopulation startReasoning Data Uploaded from
the KB Population
service, and request
sent to Reasoning to
process it. This
notification is sent
when the service
finishes the mapping
and uploading of data
in the KB.

Task request Reasoning

D6.1 – V1.0

Page 42

Reasoning Reasoning
Finished

This notification is sent
when the service
finishes the reasoning
task

Task completed Broadcast

 Photogrammetry
Verify

Reference to input data
(format to be discussed
-> Json, xml, etc.)

Unsuitable data -
> “unsuitable”
message
Suitable data ->
handle/path to 1
or more
Photogrammetry
Object

Reconstruction

 Process
PointCloud

Photogrammetry
Object

Progress report
(Json, xml, etc.)

Reconstruction

 ProcessMesh Photogrammetry
Object (with
PointCloud)

Progress report
(Json, xml, etc.)

Reconstruction

 Photogrammetry
Request

Photogrammetry
Object

 Reconstruction

 Single Image
Reconstruction

Input image data Output Summary
with regards to
extracted
material (Json)

Reconstruction

Reasoning Generation
requested

Request for
summary/report/…
generation

Task request TALN-LG

TALN-LG Generate text
request

Request for
summary/report/…
generation

Task completed Reasoning

Reasoning Analyse text
request

New content available
for analysis

Task request TALN-LA

TALN-LA Analyse text
request

Text analysis is
completed, results are
stored in the database

Task completed Reasoning

DS Data Storage Stores all types of data
in the system,
composed of different
specialized modules,
each addressing a
specific type of data

New data
available

Broadcast

Table 7: Main exchanged messages in the system

D6.1 – V1.0

Page 43

5.5 Development timeline

The development timeline of these services and components is detailed in the project
implementation plan. We compile this information as a reference in the following diagram
(Figure 8) that reveals the development track of each component and service.

Figure 8: Development timeline

In addition, the project contemplates the development and execution of four pilot use cases
(PUCs). The roadmap for the implementation of the V4Design platform does not address the
peculiarities of the PUCs directly, instead their requirements and planification is addressed in
the project plan and in the context of WP7 (user requirements and evaluation). Instead, we
use these four PUCs are a reference, taking into account the development cycles in
addressing their needs and requirements. The following are the four PUCs accounted for in
V4Design:

 PUC1: Architectural design, related to existing or historical buildings and their
environments

 PUC2: Architectural design, related to artworks, historic or stylistic elements

 PUC3: Design of virtual environments, related to TV series and VR video games

 PUC4: Design of virtual environments, related to actual news for VR (re-) living the
date

On the level of V4Design platform development and integration, there are the following four
major milestones to consider, as they correlate with the deployment and delivery of the
PUCs:

 MS2: Operational prototype (M12) - Setup of the operational infrastructure or the
first version of the architecture. No PUC is related to this milestone.

 MS3: 1st prototype and evaluation (M20) - Completion of the first development
cycle, which will be utilized for PUC1, PUC2, and PUC3.

 MS4: 2nd prototype (M28) - Completing of the second development cycle, which will
be utilized for PUC2, PUC3, and PUC4.

 MS5: Final system (M36) - Completion of the third and final development cycle,
which will be utilized for all PUCs.

D6.1 – V1.0

Page 44

5.6 Required resources

During our analysis of requirements and of the architecture and integration models, we have
derived several concerns related to the resources necessary for the development of the
V4Design platform. These include data resources, servers, encoding and decoding libraries,
and code repository. They are discussed in the following.

Data: non-semantic and semantic data sets to be used as benchmark and as a material to
support development, testing and evaluation of the first prototypes. The availability of data
is essential for the successful development of all services, and therefore special care should
be taken into account so as to provide the required data in time. In addition, the datasets
provided should be sufficiently large and diversified as to cover different scenarios and
situations, representing accurately the type of data that the services will process when
deployed in real-world environments.

Servers: each component requires its own server to run independently from the other
components, given the distributed aspect of the architecture. However, given the technical
specifications and relationship between different services, several services can be deployed
on a single server, if this improves the system efficiency. For instance, the Reasoning and
KBPopulation services, or TALN-LA and TALN-LG, or the Texture, Aesthetics and Localization
services. Overall, the minimum number of servers required for the platform is eight servers.
This is explained in the following table (Table 8: Overview of server requirements):

Message bus and logging
mechanisms

Constitutes the middleware server and acts as the
central authority of the system. Would contain
component authentication functions and logging
mechanisms, in addition to the message bus.

TALN-LG and TALN-LA Both services can be hosted on a single server since they
share the same system requirements and work with the
same data.

AE&TP and STBOL 3D analysis services can be deployed on a single server.
Each service can process a single request at a time;
therefore deploying them on a single server should not
affect their performance.

Rhino, NURO VR and REST API Deployed on a single server designed to provide access
to users and support their interaction with the system.
Standalone versions of the tools could be considered,
and would connect remotely to the REST API server.

Crawlers and data wrappers Kept on a separate server from the data warehouse and
storage for performance considerations

Data storage server The semantic and non-semantic data storages can be
hosted on a single “data service” server. The server
architecture can be chosen in a way that takes into
account requirements in performance and scalability of

D6.1 – V1.0

Page 45

data-related functionalities.

Reasoning and KBPopulation Both services can be hosted on a single server since they
share the same system requirements and work with the
same data.

3D-Reconstruction service The reconstruction service’s technical requirements and
the type of data it processes imply that it should be
hosted on its own server, since it is not fully compatible
with other configurations.

Table 8: Overview of server requirements

Encoding and decoding Libraries: encoding and decoding messages from the message bus is
a task pertinent to the system components that use the message bus to communicate with
other components. Content encoding follows the CAP protocol including the descriptions of
data objects associated to the message and the communication and routing encoding AMQP
protocol. While many libraries for encoding in AMQP are available for different development
languages and frameworks (e.g. see activemq.apache.org/cross-language-clients.html), few
tools are available for CAP, and those available may not be sufficiently mature or compatible
with some of the development languages used. Therefore, in the context of V4Design,
developers of services and platform component would assume the development of such
encoding-decoding mechanisms. Guidelines for this task will be provided in writing by the
developers of the message bus and the coordinators of the platform integration (McNeel).

Shared code repository: a code repository is required to facilitate the sharing of code,
libraries, and programs that are common to several implemented components in order to
facilitate development and standardize the way common technical topics are addressed.
This could include queues and buffers applications, data encoding and decoding (e.g.
supporting RDF format encoding), component authentication, and message encoding and
decoding libraries. This will be provided by the project coordinator.

It is worth noting that at this stage in the project we do not expect any deviations in human
resources requirements. However, if this were to occur, it will be managed by the project
coordinator under WP1.

http://activemq.apache.org/cross-language-clients.html

D6.1 – V1.0

Page 46

6 AN ENTERPRISE BUS SOLUTION FOR V4DESIGN

In technical and system architecture literature the expression “message bus” is used to
describe different things albeit all related in supporting messaging among the system
components. Essentially, a message bus is a message broker that translates messages
written in a formal messaging protocol from architecture components to others, they are
one fundamental building block for message-oriented middleware in distributed
architectures.

Beyond the fundamental nature of message brokers by which a message bus is a system that
supports message exchange patterns such as publish-subscribe, the message bus is also
responsible for routing the messages to their relevant components. In fact, according to
Hohpe [2], a bus contains a router that manages message distribution and uses a canonical
data model to which other applications or architecture components can use through
adapters, unlike simple message brokers.

When message buses are deployed as part of an enterprise application integration by which
different autonomous and distributed services are bound into a single application, the
message bus becomes better known as Enterprise Service Bus, and assumes even greater
responsibilities in establishing and maintaining communication and information exchange
among the system components. Enterprise Application Integration (EAI) models vary largely
among systems, and can be classified according to their architecture, from the most vertical
to the most horizontal. Vertical approaches rely heavily on middleware solutions, including
protocols and APIs, and are often custom-tailored to befit a specific application. Vertical
solutions tend to be time-consuming to implement and difficult to scale, edit, update or
debug, especially for large complex systems [3, 4]. In these cases, another more horizontal
architecture design, the “Enterprise Service Bus (ESB)” offers a better alternative as
discussed in section 1.2.

In effect, the ESB bus is a service-oriented solution that can integrate different applications
developed with disjoint or incompatible technologies, having different (even incompatible)
formats and communication protocols. Therefore, it can assume the roles of traducing from
one protocol to another, resolving contention issues between services, controlling
deployment and actualization of services, and sometimes extending to aspects of data
management such as data transformation and mapping, among others.

That is why a growing number of applications are built on the basis of architectural design
integration bus ESB. ESB bus is a service-oriented platform for connecting applications
created basing on various technologies, incompatible formats, data resources, and
communication protocols. The advantage of this solution is primarily its dynamic conversion
and data transformation (dynamic data transformation and conversion), distributed
communication and intelligent routing services.

Hohpe et al. have surveyed and studied enterprise integration patterns extensively and
created a list of the most common patterns are a reference point for new enterprise
application integration projects [2]. They catalogued and described 65 integration patterns
(see Figure 9) to provide a technology-independent design guidance and align similar
underlying concepts from different frameworks. We will use these patterns as a general
guideline for isolating the concerns related to V4Design architecture from those that are

D6.1 – V1.0

Page 47

irrelevant, simplifying the task of implementing the integration, and planning the different
versions of the architecture.

Figure 9: Most common/popular classes of enterprise application integration (EAI) patterns [2]

6.1 Functionalities of message bus solutions

In chapter 1, we introduced Enterprise Application Integration as a field of practice, and
discussed its relevance to V4Design, which requires a middleware solution to connect all its
components. The role of this middleware was discussed in details in chapter 2, where
V4Design architecture model was introduced. In the current chapter, we discuss specific
solutions for message bus middleware. We first discuss the general functionalities of the
message buses and distinguish the functionalities relevant to V4Design from those that are
irrelevant. Next, we introduce and compare existing solutions. Overall, there are many types
of message bus solutions; some are domain-specific and other generic. Some are oriented to
complex architectures others to more simple application integration cases. Additionally,
some are open-source and others are legacy solutions, and some implement specific
protocols while others offer more flexibility. Commercial solutions tend to integrate as many
features as possible, whereas freely available solutions under non-commercial licenses tend
to be simpler. Therefore, we conduct a walkthrough of the different aspects that may differ
between message bus solutions, contrasting this analysis with the V4Design overall
requirements and case specifics.

Message bus functionalities or responsibilities can be grouped into the following four major
concerns:

Connectivity: establishing and standardizing secure communication between the application
services or components. This includes the choice/definition of the supported communication
protocols, including the messaging protocol, and the messaging paradigm (synchronous or

D6.1 – V1.0

Page 48

asynchronous). Synchronous messaging involves a client that waits for the application to
respond to a message. In other words, in synchronous messaging, messages flow in both
directions as a two-way communication, i.e. sender sends a message to receiver and receiver
receives this message and gives reply to the sender. Sender will not send another message
until it gets a reply from receiver. By contrast, clients in asynchronous messaging do not wait
for a message response, and use a one-way communication paradigm.

It is well known that asynchronous flows are a preferred solution in many applications
integration cases, including in the case of V4Design architecture. There are several
advantages to asynchronous messaging systems e.g., they are more flexible and support a
much higher availability of services. In addition, they are more stable since a failure of
shutdown in a given component does not affect the overall system. When using such
paradigm, a special attention is accorded to performance, especially in the case of user-
driven processes. This is achieved by understanding the response time of services and
engineering communication and platform-level processes accordingly, and by taking
advantage of the parallelism in the messaging that asynchronous messaging systems
support. In addition, message tracking and routing is key since messages may not be
delivered or can get lost without notification.

Routing messages: Most of the message routing patterns are fundamental aspects of any
integration solution, for instance the message broker, message router, and message filter
patterns. However, some are complex, such as the composed message processor or the
scatter-gather patterns. These are usually not common, and reserved for highly complex
application integrations that include a large number of modules and services, each with its
own complexities. From a requirements viewpoint, it is important to isolate the patterns
relevant to the integration in order to facilitate the choice of the messaging solution to
implement. In V4Design, especially for the first version of the integrated architecture,
complex patterns will be avoided as much as possible, and the message bus solution will
concentrate on the most fundamental aspects of messaging unless explicitly specified by the
requirements analysis. In all cases, no exception or requirement is expected to entail the use
of complex messaging and routing patterns given the scope of the V4Design architecture.

Data transformation: consists of the concerns related to filtering, wrapping, translating, and
conducting other types of data operations with the data associated to the messages on the
level of the message bus. Traditionally, these concerns are too related to the specifics of the
implementation case and cannot be easily abstracted. They typically depend on the manner
that the integration deals with data exchange, and the data models and the data
management policies of each integrated service or component. The more these services
share similarities in terms of data definition and schema, the less is the need for centralized
data transformation capacities. One direct manner to deal with data transformation,
especially for small to midsize applications like the V4Design platform, is to deal with such
transformations on the client side instead of the middleware side.

One important decision related to data transformation in the context of Application
Enterprise Integration is the use of canonical data models. These models thrive to contain all
the data from the connecting data models, and therefore ensure that transforming data
from a given model to the canonical data model format is always possible, allowing to
streamline data exchange between different services. Therefore, the use of a canonical data
model will reduce the need for a centralized data translation service and would facilitate

D6.1 – V1.0

Page 49

such translation on the level of the services instead, which would in turn facilitate the
integration, increase the performance and decrease the complexity of the adopted
middleware solution.

Orchestration: the orchestration role that message bus plays in the architecture is a concern
that groups a higher level of functionalities than those usually associated with simple
message bus solutions (connectivity, routing, and data transformation). In fact, we
distinguish between technical orchestration that attends to the technical concerns of
complex routing and errors management, and the enterprise orchestration that deals with
the top-down implementation of complex business processes that the enterprise application
implements. In case of technical orchestration, patterns such as pipes and filters and
content-based routing are relevant, and in the case of enterprise orchestration, process
manager patterns and composite message processors are more relevant.

The V4Design architecture aims to ultimately support user-oriented processes and to
develop tools that provide new functionalities related to facilitating the reuse and
repurposing of graphic resources by designers and architects. The centralized aspect of these
user-oriented tools implies that no complex enterprise processes would be defined, and this
is explicitly noted in the early concept of the architecture. In fact, the way components and
services are integrated minimizes the role of the message bus in orchestrating the system
processes. These processes are either autonomous or automated, or mostly based on
notifications, data queries, and service-driven data transformations (including data
extraction and classification). Therefore, in terms of integration of the V4Design
architecture, we will centre solely on technical orchestration requirements.

Besides these four aforementioned concerns, there are several more concerns related to
Enterprise Applications that are usually associated with message bus applications, such as
business engines and application monitoring. These concerns are considered outside the
scope of V4Design architecture because they address aspects of integration pertinent to
application of much larger size and complexity. On this level, concerns of meta-integration
and the overall correlation of the system processes with the business processes become
more relevant.

In general, the complexity of the message bus solution tends to correlate with how close the
requirements and specifications of the integrated components to standard practices and
protocols are: the less distant they are the more likely we are to use a lightweight
proprietary or open-source ESB solution; the more distant they are the more we need to
consider custom-built ESB that itself integrates different modules stacked and connected
according to the integrated application’s requirements. Based in this reasoning, and in the
light of the previous discussion on major message bus concerns, the types of message bus
mostly compatible with the architecture of V4Design are generally simple and light, or what
otherwise is known as lightweight ESBs. Compared to traditional ESBs, lightweight ESBs as
their name suggests, are simplified integration solutions that focus on common needs and
centre on efficiency and productivity instead of encapsulating features and functionalities.

6.2 Functional aspects supported by the V4Design message bus

Based on the early concept of the V4Design architecture and the description of the services
that it will integrate, we have defined a set of functionalities that the message bus should

D6.1 – V1.0

Page 50

support. In addition, we have disregarded explicitly some functionality that are either are
delegated to the services or are deemed outside the scope of the V4Design platform, and
platform integration. Both are discussed in the following.

6.2.1 Supported functional aspects

In connectivity:

A) Security and exception handling: The message bus centralized role (use of a single
centralized bus) in establishing and maintaining communication among the platform
components reduces security risks but does not eliminate them completely. The
message bus will implement a protocol-specific authentication and authorization
scheme for the components to reduce further security risks. In addition, logging
messages coming through the message and other practices will account for the same
objective. Given than security will also be managed on a component level, there is no
explicit need for using Security Decision and Security Enforcement services (SDS and
SES).

In routing messages:

A) Routing messages between components: The message bus will take charge or
routing all messages between components of the platform architecture.

B) Monitoring and control of message routing: The bus traffic will be logged and the
routing system monitored passively [5]. Passive monitoring does not inject messages
into the bus or modify on-going traffic; it collects information about transient
messages as they reach the bus. The concerns addressed by this monitoring are:
routing errors, protocol mixes, and message rates. Low-level concerns such as
timings and transmission accuracy/errors are not addressed, as they are only
relevant to the network architecture where the platform will be deployed, and
therefore will be addressed in this context rather than on the level of the message
bus. To analyse the requirements of the message bus, we will assume a separation of
concerns with network performance issues. We note that the information collected
for the aforementioned purposes will not be analysed in real time.

C) Sequencing and queuing of messages: Sequencing and time stamping are standard
features of any message bus system. In some basic cases, the sequence number and
the timestamp are the same parameter, but in most elaborate cases they differ and
are employed for different purposes. The sequence number is generally used as a
unique identifier for the message, and is assigned by the bus, while the timestamp is
generally assigned by the component that generates the message. By default, the
message bus will apply a FIFO (First-In-First-Out) queuing protocol, but will be able to
support different policies in the case where it is required by the functional
requirements.

In orchestration:

A) Resolving competition between communicating components: the message bus will
take charge of resolving competitive requests or potential resource contention
conflicts. The message bus will utilize a queuing strategy to respond to situations in
which a component is experiencing on-going contention (oversubscribed).

D6.1 – V1.0

Page 51

6.2.2 Unsupported or irrelevant functional aspects for V4Design

Taking into account the envisioned design of the platform architecture, the scalability of the
architecture is not a direct concern for integration. In other words, we will not account for
multiple instances of the same service, and we assume that each service will be hosted on a
single given server or end-point. In case parallel instances of a given service are
contemplated, then the load-balancing between these instances is not a concern of the
message bus, which will treat the service as a single end-point, integrating with the load
balancer. In addition, and based on the same design, security risks will mainly be mitigated
at service-level. Using a centralized message bus reduces security risks, and the message bus
will implement protocols for authentication and authorization. However, each service should
account for its own security policy and protocols.

In data transformation:

A) Data transformation, mapping and transmission: data will not be routed through
the message bus, nor will the message bus monitor data read/write operations or the
correct execution of queries. The message bus will propagate messages announcing
the availability/unavailability of data on the behalf of the data service, but will not
channel data. Data transmission will be address through public URI addressed
associated to data objects by the data storage and retrieval systems.

B) Protocol conversion and protocol validation: the selected protocol for message
communication among the platform components is the CAP V1.2, which will dictate
the format and type of messages implemented in the system. The message bus will
respond with an error message when the message header is not formatted according
to the protocol definitions, and otherwise will route the message to its destination.

In orchestration:

A) Marshal use of redundant services: since the components of the platform will be
deployed as online independent server architectures, each component will be
responsible for providing a scalable service that can accommodate the expected load.
The scalability of the platform therefore rests on the ability of its service components
to scale.

B) Controlled deployment and versioning of services: As independent services, the
architecture components will be responsible for their own deployment control and
versioning of service. Upon deployment and activation they authenticate and register
with the message bus, which will follow up on service availability.

In the following, we discuss some of the popular message bus solutions that are currently
available in the market, and choose the most adequate solution for V4Design, taking into
account the general requirements of the V4Design architecture and the specifications of the
services it integrates.

6.3 Popular and relevant message bus solutions

Many tools are currently available to bind data and link systems together. Open source
message bus solutions differ from classic ESB software. Open source solutions are essentially
more modern solutions, lightweight and flexible (deployable in different configurations)

D6.1 – V1.0

Page 52

mainly because they delegate more tasks to the endpoints (e.g. message transformation),
reliable transportation, and long-running orchestration between endpoints. In this way, the
system does not cede control to a centralized bus, but rather uses the message bus to
transport opaque data between endpoints. This allows the message bus to become more
efficient at ingesting and routing data (and large quantities of data), and the latest versions
are becoming very good at it.

We have conducted a comparative analysis of the different solutions for message bus
currently available, and meeting a general criterion for stability, reliability, availability, ease
of implementation, customization, scalability, extensibility, compatibility with messaging
protocols, among other concerns. The aim was to isolate potential candidate solutions
compatible with our understanding of the overall requirements of the V4Design platform.
Consequently, the identified candidates were compared in more details and evaluated
according to the scope of integration in V4Design.

In the following, we discuss these identified solutions (Table 9). Each described in terms of
its license, development language, client language, required operating system, and
compatibility with messaging protocols. We start by a detailed overview of open-source
solutions for their high relevance to V4Design framework, and then follow with an overview
of legacy-based (proprietary) solutions.

Solution License Dev. Language Client Languages OS
Protocol

Compatibility

Apache
Kafka

Apache
license 2.0 Scala Kafka script

Cross-
platform Kafka protocol

Apache
ActiveMQ

Apache
License 2.0

Java with JMS,
REST and
WebSocket
interfaces

many, including
C/C++, Python,
NodeJS, Java, etc.

Cross-
platform

AMQP, MQTT,
OpenWire,
STOMP

Apache
Distributed
Log

Apache
License 2.0 Java

DistributedLog core
library

Cross-
platform Flexible

RabbitMQ

Mozilla
Public
License Erlang

mainly Java, .NET
Framework, and
Erlang

Cross-
platform

AMQP, STOMP,
MQTT, HTTP

NATS MIT Go

major
programming
languages

Cross-
platform NATS protocol

GoogleRPC

Open
Source
License

3
implementatio
ns (C99, Java,
Go).
Uses Protocol
Buffers as IDL

many, including
C/C++, Python,
NodeJS, Java, etc.

Cross-
platform Flexible

Table 9: Selected examples of message bus solutions

D6.1 – V1.0

Page 53

6.3.1 Open-source message bus solutions

There are many advantages for using open-source solutions in enterprise applications,
including integration. For a start, open-source solutions are generally more reliable from a
product perspective because they liberate the product from dependence on external
providers, vendors, or legacy technological frameworks, which in case of innovative projects
can sometimes become a real barrier for progress. Open-source solutions are highly flexible
and agile because they offer many alternatives to solve problems and generally allow casting
complex problems into a composition of smaller more manageable problems. Furthermore,
a great advantage of open-source solutions is the community-produced and validated a set
of pre-existing solutions for typical and common problems, allowing for a speedy
implementation. Finally, open-source solutions usually allows to build small basic versions
and scale the project from there in an iterative manner, and allowing iterative testing and
evaluation to achieve a highly reliable outcome. The following five message bus solutions are
among the most popular in the market today, and among the more ubiquitous.

Apache Kafka: Originally designed by LinkedIn and now is part of the Apache project, Kafka
was developed under the influence of persistent requirements in Enterprise Application
Integration. Kafka stores the messages in flat files that are queries by offset, or in other
words, Kafka clusters the publishing of messages and requires the consumer to track
subscription. This simple approach and agnostic attitude towards its clients allows Kafka to
perform very efficiently while maintaining a low consumption of resources. Its message
management system doubles as a message queue and a log that can store messages for
prolonged periods of time without affecting performance. On the other hand, Kafka lacks
many features in comparison with other message bus solutions.

Apache ActiveMQ: it is the most popular open source message broker with the largest
distribution network. It implements the Java Message Service specification and offers
numerous features, including an excellent support for many of the Enterprise Integration
Patterns. A highlight for ActiveMQ is its flexibility in supporting clustering and distribution by
which several brokers can be connected into a network of brokers.

Kafka and ActiveMQ may share many features but they were originally designed for different
purposes. Kafka is a distributed streaming platform with a very good horizontal scaling
capability and ideal for big data processing of small messages. It allows applications to
process and re-process streamed data on disk with a high throughput, and therefore it is
commonly used for real-time data streaming. By contrast, ActiveMQ is a general-purpose
message broker that supports several messaging protocols such as AMQP, STOMP, and
MQTT. In general, it is mainly used for integration between applications/services especially
in a Service Oriented Architecture, and is more ideal for enterprise messaging.

DistributedLog: it is essentially a replicated log stream stores solution. Its key abstract
element is a continuous replicated log stream. All the records of a log stream are sequenced
by the stream owner, and the reader can read the stream starting from any sequence
number. DistributedLog is currently being merged with BookKeeper, an enterprise-grade
storage system designed to provide durability, consistency, and low latency. It was originally
developed at Yahoo! Research as a high availability (HA) solution for the Hadoop Distributed
File System (HDFS). BookKeeper is widely adopted by enterprises like Twitter, Yahoo and
Salesforce to store and serve mission-critical data and supporting different use cases. The

D6.1 – V1.0

Page 54

merger of DistributedLog with BookKeeper implies that support and improvement of
DistributedLog as a standalone application is improbable. However, the functionalities of
BookKeeper could be relevant to the V4Design platform on the long term, albeit outside of
the scope of the project. A comparison between Kafka and DistributedLog can be seen in
Figure 10.

RabbitMQ: The RabbitMQ broker was created by the functional language Erlang, which is
especially suited for distributed applications because of its high-level support for
concurrency and availability. The core implementation of RabbitMQ is fully compatible with
the AMQP protocol, but additional protocols can be supported by integrating RabbitMQ
plugins. It has an appealing web-enabled management console that facilitates the system
administration, and the monitoring of the overall bus health and activities through a series
of implemented indicators (e.g. number of messages per second, resource consumption,
etc.).

Figure 10: Comparison between Kafka and DistributedLog approaches [6]

NATS: it is a simple (even simplistic), high-performance open-source messaging solution
oriented towards cloud native applications, IoT messaging, and microservices architectures.
It is an example of modern messaging systems that are born from the evolution of simple
service-oriented web architectures as they grew rapidly and sometimes exponentially in
number of users. Instead of cramming different workflows and business processes, the
approach of this type of message bus solutions centres on the performance of ingesting and
routing large quantities of data. The basic solution is light, but also configurable for more
complex applications.

gRPC: is a framework for implementing HTTP-based remote procedure call (RPC) services. It
is designed to support the creation of highly efficient and scalable APIs and micro-services.

D6.1 – V1.0

Page 55

From a message bus perspective, it is more oriented toward technical orchestration and less
so towards messaging in a classic sense. Its use of the HTTP2 standards allows it to support
bidirectional streaming and to implement flow control over TCP connections, making it ideal
for streaming applications and environments where synchronization between end-points is
essential. TCP provides apps a way to deliver (and receive) an ordered and error-checked
stream of information packets over the network. The User Datagram Protocol (UDP) is used
by apps to deliver a faster stream of information by doing away with error-checking. When
configuring some network hardware or software, you may need to know the difference.
Finally, gRPC has its own Protocol Buffers library that facilitates the definition and
integration of services.

6.3.2 Legacy-based message bus solutions

Proprietary message bus solutions are available almost from all vendors of Enterprise
Software solutions, including Microsoft, Oracle, IBM, Amazon, and others. Almost by
definition, these solutions adhere to the specifications of their legacy framework, and are
primarily designed to work within a legacy ecosystem composed of several Enterprise
Applications often sold as individual products. Therefore, the use of proprietary message bus
solutions conditions the overall system architecture with legacy requirements, which may
include the need to develop and deploy the entire platform in accordance with the chosen
legacy framework.

The advantages of such solutions lay in their loyalty to industrial standards of performance,
quality, and reliability. However, they are easily comparable to other open-source solutions
when it comes to applications where the enterprise coordination is not required, or when
only the basic integration patterns are concerned.

In the following table (Table 10), we show popular examples of legacy-based message bus
solutions that are popular on the market. We choose not to include them in selecting the
appropriate message bus solution for V4Design, and instead centre on open-source
solutions.

Solution License Dev. Language Client Languages OS
Protocol

Compatibility

Azure Service
Bus Commercial

.NET
Framework
Java

Java with JMS, C,
PHP, Python Azure-Cloud AMQP

Amazon
Simple Queue
Service (SQS) Commercial Java

AWS
Management
Console & Java
with JML AWS-Cloud Flexible

IBM
Integration
Bus Commercial

Java, ESQL, C++,
Visual Basic,
and .NET

ESQL, Java, PHP,
.NET

Cross-platform (
AIX, HP-Itanium,
Linux, Solaris,
Windows, z/OS) Flexible

Table 10: Selected examples of commercial message bus solutions

D6.1 – V1.0

Page 56

Function Relevance Description

Invocation Relevant support for synchronous and asynchronous transport
protocols, service mapping (locating and binding)

Routing Slightly
relevant

addressability, static/deterministic routing, content-based
routing, rules-based routing, policy-based routing

Service
orchestration

Not Relevant coordination of multiple services exposed as a single,
aggregate service

Event processing Not Relevant event-interpretation, correlation, pattern-matching

Quality of
service

Relevant reliable delivery, transaction management

Adapters Slightly
Relevant

adapters for supporting integration with external and
legacy systems

Security Relevant standardized security-model to authorize, authenticate &
audit use of the ESB

Validation Relevant validation against CAP schema for sending and receiving
messages

Enrichment Not Relevant enriching messages from other sources/services

Commodity
Services

Not Relevant commonly used functionality as shared services depending
on context

Table 11: Relevance of general message bus functionalities to V4Design

In Table 11, we describe the most popular functionalities of message bus solutions as
defined by their developers and distributors. Based on our previous description of the
expected functionalities of V4Design message bus, we value the relevance of each aspect as
a reference to facilitate the selection of the adequate solution for V4Design.

6.4 Selecting a message bus solution for V4Design

Before selecting a message bus solution, we set the general selection criteria in order to
evaluate the different candidates, based on the concerns related to V4Design and the
implementation of its platform.

Availability: the message bus should be constantly available and therefore the way it is
deployed and connected should be as stable as possible. This includes network connectivity
concerns, but also the way the message bus responds to requests in different situations.

Resilience: the capacity of the message bus to recover from difficulties is also an important
factor since the services it integrates have different maturity levels (some are early
prototypes), and due to the experimental aspect of the V4Design platform.

Throughput: the V4Design application will handle different types of data in different
manners, creating a diversity of situations that is more typical of complex enterprise
applications than small-to-midsize applications. These include heavy 3D models, movies and
high-resolution images, but also light metadata and semantic information. For this reason,
the throughput of the message bus is an important factor.

D6.1 – V1.0

Page 57

Lightweight: the number of Enterprise Integration Patterns relevant to V4Design is generally
low and focusing on simple and basic requirements. There is no apparent need to support
complex routing or processing on the level of the middleware. These functionalities are
better delegated to the services. Therefore, we opt for a lightweight message bus solution
that facilitates the implementation of the architecture and its maintenance, and the future
expansion of its features and services.

Security: V4Design will process data and media resources, some possibly under licensing
agreements; therefore security is basic concern for the entire architecture. Due to the
experimental aspects of its implementation, and the integration of prototypical services that
will mature along the project implementation plan, the message bus will implement some
security protocols. In addition, security will also be addressed on the service level.

Ease of implementation: The optimization of available resources is important to allow
flexibility in responding to changing requirements and evolving concepts in the context of
the project, therefore it is important to choose a solution that facilitates the implementation
of the message bus and allows flexibility in adapting it to the V4Design development
environment.

Flexibility: as new requirements come to light and other requirements change in accordance
with the evolving implementation of the services, and the emergence of new use scenarios
and use cases, the flexibility of the message bus becomes an important factor. One way to
consider flexibility is through the availability of modules, add-ons, and components that can
be easily integrated in the message bus to support these requirements. Another aspect of
flexibility is the adaptation of the message bus solution to the known requirements, which
include the use the CAP messaging protocol.

A first evaluation of the available open-source message bus solutions shows that ActiveMQ
is the most adequate solution or the most compatible with the V4Design general
requirements and functional concerns. RabbitMQ is also an excellent choice, but ActiveMQ is
simpler and better befitting to our requirements. RabbitMQ is easy to use and deploy but
also is geared towards advanced or complex scenarios like routing, load balancing or
persistent message queuing. This makes RabbitMQ less scalable and slower because the
central node adds latency and message envelopes are usually quite large in comparison to
ActiveMQ. In addition, RabbitMQ needs Erlang runtime environment, which is not necessary
for ActiveMQ.

This choice implies that the message bus will centre on routing concerns rather than
workflow and process execution, and will typically be lightweight and deployed in a
configuration that supports high availability and reliance. This also implies that the
integrated services will have a significant responsibility, and will not delegate control to a
centralized bus, but rather use the bus as a content-agnostic transport system for data
across the architecture.

6.5 Deploying the message bus in the cloud

Nowadays, with the advances in cloud-based architectures and the maturing of cloud
services, Cloud Integration for distributed applications seems to be the best generic option.
In fact, this approach takes advantages of Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) paradigms that facilitate the integration to a great extent, and offer additional

D6.1 – V1.0

Page 58

technical services that alleviate maintenance, management, and monitoring costs of the
application.

Based on the concept of the V4Design platform, the description of its components and
services, and the overall requirements of its architecture, we consider a cloud-based
integration model for the following reasons:

 Using PaaS and IaaS models will reduce the overhead needed for managing low-level
technical concerns, such as the management, allocation, and scalability of resources,
load balancing, backup functions, security management, portability, among others.

 In the case of the message bus, third-party implementations of ActiveMQ are
available and can alleviate some of the development costs without compromising the
independence of the platform, as later version may emancipate by deploying locally
the exact same versions of the software provided by third-party. Using such solutions
will notably reduce the overhead for development, and facilitates the
implementation, deployment and management of the server architecture.

 The long-term servicing and support required for the platform can be assumed by the
service provider.

Despite recent advances in cloud-based architecture, security remains a concern for cloud
users and is complicated by the challenge of integration. A cloud integration solution must
be capable of authenticating and authorizing access to resources and services, and able to
encrypt and store data. In addition, there are some concerns related to flexibility and
scalability in the cloud environment for distributed applications, but this is mitigated largely
by modern PaaS services. These services offer convenience and ease of use while shifting the
burdens such as maintenance and upgrades to the provider. Here, the trade-off is a loss of
visibility and control over some technical aspects, and in some cases a reduced ability to
debug the application. Some providers include rich monitoring capabilities in order to
provide the visibility and control over information flows and other performance attributes.

There are several available cloud-based solutions that implement ActiveMQ message bus,
namely Amazon Web Services’ Amazon MQ *7+ that makes it easy to set up and operate
message brokers based on ActiveMQ in the cloud. It allows direct access to the ActiveMQ
console and supports most messaging protocols such as JMS, AMQP, STOMP and MQTT. In
addition, it provides several add-ons and modules to support complex message bus
functionalities (including transcription between messaging protocols).

6.6 Implementing the CAP messaging protocol

According to the project’s plan, and in consensus with the partner owners and developers of
services that will be integrated in the V4Design architecture, the messaging protocol
according to which the exchanged messages will be formatted is the Common Alerting
Protocol Version 1.2 [8], CAP in short hereafter.

The CAP has been originally developed as a generic format for exchanging emergency alerts
and public warnings over various early-warning, disaster prevention and relief, and
emergency management networks, which are complex meshes of urban and infrastructure
systems, data and intelligence centres, command centres, NGOs, and others [9, 10]. The CAP
protocol provides an open, non-proprietary digital message format for all types of alerts and

D6.1 – V1.0

Page 59

notifications, and it is useful beyond its application is emergency alerts and public warnings.
The CAP helps to standardize event content so different and independent networked
components and services can send and receive events in a common format using common
and flexible conventions. The CAP standard defines the mandatory and optional fields for
this type of events, and the acceptable values for each field. In short, the CAP is a consistent,
complete, multilingual, and interoperable global emergency communication protocol that
offers standard guidelines for developing emergency information and messages. It is
adopted by states and organizations for integrating services to exchange emergency
information.

Therefore, the central focus of the CAP protocol is on event format. In Enterprise Application
Integration that use the CAP protocol, a layer of event processing and management usually
mediates or transforms messages between the CAP standardized format and other legacy
formats, which are selected according to each architecture’s requirements and preferences.
By nature, the CAP can also be extended to handle more operative aspects of the enterprise
applications that use it as an event-encoding standard.

In practice, in emergency alerts and public warnings systems, each of the participating
agencies that integrate or interface with the system usually implements its own CAP broker
and event processing middleware for constructing, issuing, and processing incoming CAP
messages. To further facilitate the process of adopting CAP and integrating with CAP
compliant systems, a set of tools called “Common alerting protocol (CAP) alert origination
tools” has been developed *11+. In addition, the CAP protocol has been extended to support
flexible geographic targeting by enabling geospatial boxing using lat/lon, 3D representation,
and facilities for digital images, video and audio data.

Currently there are several tools that can be useful for V4Design development in the context
of the CAP protocol, including a CAP PHP library [12], a Java library from Google [13] and an
online format validation tool (also from Google) [14].

6.6.1 Formal definition of CAP standard format

As we can see from Figure 11, the basic CAP document object model is composed of four
main segments called Alert, Info, Resource and Area. The Alert segment is the main message
segment and provides basic information about the message and references to other related
messages. The Alert segment can be used alone for system functions such as
acknowledgements and cancellations.

Usually, a CAP message includes at least one Info segment, which describes the event in
details with occasional instructions for expected response. Multiple Info segments can be
used in a single message to describe differing parameters, which is an interesting aspect that
can be exploited in applications that work with objects having evolving states, such as
animation and virtualization applications, from a V4Design perspective.

The Resource segment describes a digital asset that is related to the event information, and
several Resource segments can be associated with a single Info segment. The Area segment
describes the geographic area or boundaries of the event. This is usually represented by
geospatial shapes (polygons and circles) and an altitude range, expressed in standard
latitude / longitude / altitude terms. An event may contain more than more Area segment,
similarly to Resource segments.

D6.1 – V1.0

Page 60

Being designed for alert applications, the CAP protocol is ideal for broadcasting messages to
different systems, and coordinating responses from different systems nearly in real time. It is
designed to normalize and aggregate data from various sources to generate graphical or
visually-oriented representations, which aid in situational awareness and pattern
detection/extraction applications. In the following, we show the formal CAP document
object model representation.

Figure 11: Formal CAP document object model representation

6.6.2 Using CAP protocol in V4Design applications

In essence, and from a V4Design viewpoint, the CAP protocol focuses heavily on formatting
the message’s content, structuring it in a flexible way according to the protocol’s
specifications. The CAP protocol focuses less on routing, queuing, security and other more
technical concerns from an Enterprise Application Integration viewpoint. The real added
value of the CAP protocol for V4Design applications is its ability to define geospatial

D6.1 – V1.0

Page 61

information in a standard way, and to associate series of digital resources to the message,
making it ideal to integrate the services conceived for the platform.

Overall, and to the extent of our knowledge, there are no service-oriented enterprise-level
architecture similar to that conceived under V4Design that uses the CAP protocol as its
primary messaging protocol in its messaging middleware, although it is extensively used in
disaster alert systems and similar applications. Even in these cases, the CAP protocol is used
with complementary protocols on the level of local platforms and systems to ensure other
messaging requirements not specifically covered by the CAP protocol. In addition, there is
no mainstream message bus that supports the CAP protocol or lists it as one of its main
supported protocols, with the exception of IBM’s IBM Intelligent Operations Centre [15],
which is a generic software solution designed to facilitate effective supervision and
coordination of operations. Existing examples of operational CAP brokers are small-scale ad-
hoc projects (e.g. SAMBRO: https://sahanafoundation.org/sambro/), which do not seem
adequate for reuse in the context of V4Design integration.

By contrast, other mainstream protocols used in message bus focus far more on technical
aspects rather than content: for instance, the Advanced Message Queuing Protocol (AMQP)
supports a wider range of functionalities that are more adequate for Enterprise Application
Integration, such as flow control and message-delivery guarantees, authentication and data
encryption. This wire-level protocol describes the format of data sent across the network as
a stream of bytes, and therefore any system that interprets messages in this format can
interoperate with any other system.

Therefore, a good option to combine the advantages of the CAP protocol with those of
mainstream protocols is to use a legacy protocol for messaging and routing and other
technical concerns, and encode its message content as a CAP event. Under this approach,
the message bus will not decode the message content but rather treat it as a black box, and
will only log message transactions but not the messages themselves. Encoding and decoding
the message content will be dealt with on service-level: each service should be able to
achieve this through its own message bus interface.

https://sahanafoundation.org/sambro/

D6.1 – V1.0

Page 62

7 CONCLUSIONS

In order to mitigate the risks associated with the failure of scientific and technical integration
of the platform components, a roadmap for the development of the V4Design platform is
presented in this document. It situates the platform development and integration within the
context of Enterprise Application Integration, and draws on existing models of application
architecture, practices, and relevant approaches in this field.

At this early phase of the development process, nearly all components and services that
would be integrated in the platform are either concepts or in the early stage of
development. Therefore this roadmap provides a reference document with guidelines to
insure that platform-level concerns are addressed coherently in the development of these
components and services.

The roadmap presents an architecture model for the V4Design platform that is based on
distributed and composite applications, in which similar components are grouped and
standardized, and the communication protocols and mechanisms established and described.

As part of its analysis of high-level specifications, the roadmap includes a comparative
analysis of existing middleware solutions for messaging and communication, and makes the
decision to use an industrial solution that befit closely the case of V4Design and the nature
of its architecture. This concludes by the selection of ActiveMQ message bus as the most
adequate middleware solution for establishing and maintaining communication in a way that
facilitates the construction of the platform’s middleware.

The roadmap also includes a high-level description of the platform components and services
as defined by their owners, and an early assessment of their requirements. These concerns
will be addressed more in details in the context of deliverable D6.2 that describes the
technical requirements that will be taken into account during the implementation of the
platform, and describes the functionalities that will be supported, alongside the system
architecture used for the implementation of the defined platform prototypes. In the context
of the roadmap, we identified the main specifications of each module and discussed how to
integrate them conceptually in a coherent way.

In addition, the roadmap identifies and discusses several concerns for the development of
the V4Design platform, including data management, security, hosting, communication,
queuing, among others. It proposes a more advanced conceptual model by which the
definition of modules are standardized and grouped into four essential categories, according
to their role in the platform: user tools, middleware components, services, and data storage
and retrieval.

Finally, the timeline for the development of the platform is integrated based on the
individual milestones of the components, and the milestones that govern the platform
development cycles. The main required resources for this development are identified and
discussed from a platform point of view.

D6.1 – V1.0

Page 63

8 REFERENCES

[1] GORTON, Ian; THURMAN, Dave; THOMSON, Judi. Next generation application
integration: challenges and new approaches. En Computer Software and Applications
Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual Internat.

[2] HOHPE, Gregor; WOOLF, Bobby. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

[3] Orłowski C., Ziółkowski A., Czarnecki A., Validation of an agent and ontology-based
information technology assessment system, Cybernetics and Systems: An
International Journal, 41 (1), 62–74, 2011.

[4] Orłowski C., Rule-based model for selecting integration technologies for Smart Cities
systems // Cybernetics and Systems, 2014 – in press.

[5] Curtis, James "Passive Measurement", Jan 17, 2000.
http://wand.cs.waikato.ac.nz/old/wand/publications/jamie_420/final/node9.html

[6] A technical review of Kafka and DistributedLog, Apache Foundation 2016
http://bookkeeper.apache.org/distributedlog/technical-review/2016/09/19/kafka-
vs-distributedlog.html

[7] Amazon Web Services’ implementation of ActiveMQ, known as Amazon MQ:
https://aws.amazon.com/amazon-mq/

[8] Common Alerting Protocol Version 1.2, publish specifications. https://docs.oasis-
open.org/emergency/cap/v1.2/pr03/CAP-v1.2-PR03.pdf

[9] Video “Introduction to CAP”, Eliot Christian (WMO):
http://www.youtube.com/watch?v=n0iKp60jjtY

[10] Video on the use of CAP in real-time biosurveillance pilot, Nuwan Waidyanatha
(LIRNEasia): http://www.youtube.com/watch?v=G7WOq5giddI

[11] Description of the Common Alerting Protocol Alert Origination Tools, by the U.S.
department of homeland security. https://www.dhs.gov/publication/common-
alerting-protocol-alert-origination-tools

[12] A PHP Library for CAP protocol message encoding/decoding: https://github.com/AT-
backbone/Cap-PHP-library

[13] A Java Library from Google for CAP protocol message encoding/decoding:
https://github.com/google/cap-library

[14] An online CAP validation tool from Google: http://cap-validator.appspot.com/

[15] www.ibm.com/support/knowledgecenter/en/SS3NGB_5.1.0/ioc/kc_welcome.html

http://bookkeeper.apache.org/distributedlog/technical-review/2016/09/19/kafka-vs-distributedlog.html
http://bookkeeper.apache.org/distributedlog/technical-review/2016/09/19/kafka-vs-distributedlog.html
https://aws.amazon.com/amazon-mq/
http://www.youtube.com/watch?v=n0iKp60jjtY
http://www.youtube.com/watch?v=G7WOq5giddI
https://www.dhs.gov/publication/common-alerting-protocol-alert-origination-tools
https://www.dhs.gov/publication/common-alerting-protocol-alert-origination-tools
https://github.com/AT-backbone/Cap-PHP-library
https://github.com/AT-backbone/Cap-PHP-library
https://github.com/google/cap-library
http://cap-validator.appspot.com/
https://www.ibm.com/support/knowledgecenter/en/SS3NGB_5.1.0/ioc/kc_welcome.html

