
 Page 1

V4Design
Visual and textual content re-purposing FOR(4) architecture, Design and virtual

reality games

H2020-779962

D6.2 Technical requirements and
architecture

Dissemination level: Public

Contractual date of delivery: Month 10, 31 October 2018

Actual date of delivery: Month 11, 2 November 2018

Workpackage: WP6: System integration and tool development for
content re-purposing

Task: T6.1: Technical requirements and system architecture

Type: Report

Approval Status: Final version

Version: 1.0

Number of pages: 112

Filename: D6.2_V4Design_TechnicalRequirementsAndArchitecture_201
81102_v1.0.docx

Abstract

This deliverable details the technical requirements that will be taken into account during the
implementation of the V4Design platform. In addition, it describes the functionalities that
will be supported by the platform. Finally, it outlines the system architecture that will be
used for the implementation of the platform prototypes.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

 Page 2

co-funded by the European Union

D6.2 – V1.0

Page 3

History

Version Date Reason Revised by

0.1 16/07/2018 ToC creation and content definition Ayman Moghnieh,
Luis Fraguada,
Verena Vogler

0.5 10/09/2018 1st integrated draft circulated to WP6-
related partners for comments and
contribution

Ayman Moghnieh,
Luis Fraguada,
Verena Vogler

0.6 10/10/2018 Integration of partners’ contributions and
revision of all sections. Preparation of the
pre-final draft and sent for internal review

Ayman Moghnieh,
Luis Fraguada,
Verena Vogler

0.9 18/10/2018 Internal review comments Yash Shekhawat
(NURO)

1.0 30/10/2018 Preparation of the final draft Ayman Moghnieh,
Luis Fraguada,
Verena Vogler

Author list

Organization Name Contact Information

McNeel Ayman Moghnieh aymanmoghnieh@gmail.com

McNeel Luis Fraguada luis@mcneel.com

McNeel Verena Vogler verena@mcneel.com

CERTH Spyros Symeonidis spyridons@iti.gr

CERTH Elisavet Batziou batziou.el@iti.gr

CERTH Konstantinos Avgerinakis koafgeri@iti.gr

CERTH George Meditskos gmeditsk@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

NURO Yash Shekhawat yash.shekhawat@nurogames.com

NURO Christian Mueller christian.mueller@nurogames.com

UPF Simon Mille simon.mille@upf.edu

UPF Jens Grivolla jens.grivolla@upf.edu

KUL Jens Derdaele jens.derdaele@kuleuven.be

D6.2 – V1.0

Page 4

Executive Summary

This document discerns the technical requirements and specifications of the V4Design
platform architecture and components, including services, middleware modules, and
envisioned user tools.

It introduces and explains the tools and mechanisms used to extract and analyse these
technical requirements, including documents analysed, use-cases studied, interviews carried
on, and surveys conducted. It also discusses the domain of V4Design by reviewing its defined
usage scenarios, and discerning the related user requirements under each scenario, and
associated with each user profile.

Then, it discusses the main technical concerns of the V4Design platform architecture, being
its architecture design and integration model, the logical design and elements of a V4Design
service, and the data management policy established in accordance with the platform’s
expected data processing flow.

On an elemental level, each envisioned platform component is reintroduced before
describing its technical requirements with focus on its deployment environment
specifications, its data processing and local data management, its relation with other
modules in the architecture, and its relevance to the user requirements, through which
specific technical requirements are defined. This detailed description of technical
requirements and specifications is applied to the eight V4Design services, its two
middleware components, and its two envisioned user tools.

Finally, the gathered and described requirements are analysed alongside common concerns,
and consequently additional specifications are described for data management including a
generic definition of the schemas of the data objects contemplated, a comprehensive list of
message topics to establish communication among platform components, and the logical
design of the platform cycle and its chronological order.

The document concludes by highlighting the findings described, and the processes by which
all partners have converged onto a common understanding of the specifications,
functionalities and architecture of the intended platform.

D6.2 – V1.0

Page 5

Abbreviations and Acronyms

AMQP Advanced Message Queuing Protocol

API Application program interface

DB Database

GUI Graphic User Interface

HLURs High-level user requirements

JMS Java Message Service

JSON JavaScript Object Notation

RDF Resource Description Framework

SQL Structured Query Language

TRs Technical Requirements

UIMA Unstructured Information Management Architecture

URI Unique Resource Identifier

URs User Requirements

D6.2 – V1.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 INTRODUCTION TO TECHNICAL REQUIREMENTS .. 9

2.1 Technical requirements analysis: a broad definition ... 9

2.2 Scope and applicability of technical requirements analysis in V4Design 12

2.3 Methods and approaches for gathering specifications .. 14
2.3.1 Selected approaches for gathering requirements in V4Design ... 16

3 DOMAIN DEFINITION: OVERVIEW OF V4DESIGN USAGE SCENARIOS AND USE CASES 19

3.1 V4Design use cases and scenarios .. 19

3.2 V4Design user profiles and user requirements ... 22

4 ARCHITECTURE DESIGN SPECIFICATIONS AND TECHNICAL REQUIREMENTS 25

4.1 Architecture design of the V4Design Platform .. 25

4.2 Logical design of a V4Design service ... 30

4.3 Data management specifications ... 31

5 ELEMENTARY REQUIREMENTS AND SPECIFICATIONS OF THE V4DESIGN COMPONENTS
 35

5.1 Technical requirements and specifications of V4Design services 35
5.1.1 Language Analysis - UPF ... 35
5.1.2 Language Generation - UPF ... 38
5.1.3 V4Design Crawler - CERTH ... 40
5.1.4 Aesthetics Extraction and Texture Proposals (AE&TP) - CERTH .. 44
5.1.5 KB Population - CERTH ... 47
5.1.6 Semantic Integration and Reasoning - CERTH ... 51
5.1.7 Spatio-Temporal Building and Object Localization (STBOL) - CERTH 53
5.1.8 3D Reconstruction - KUL .. 57

5.2 Technical requirements and specifications of V4Design middleware components. 60
5.2.1 The V4Design message bus - McNeel .. 60
5.2.2 The V4Design REST API - NURO ... 62

5.3 Technical requirements and specifications of V4Design user tools 64
5.3.1 V4Design for Rhino - McNeel ... 64
5.3.2 VR Authoring tool - NURO .. 70

D6.2 – V1.0

Page 7

6 REQUIREMENTS OVERVIEW ... 74

7 REQUIREMENTS ANALYSIS AND APPLICATION ... 80

7.1 Data management specifications ... 80

7.2 Messaging ... 82

7.3 The platform cycle ... 84

8 CONCLUSIONS ... 87

9 REFERENCES .. 88

A APPENDIX A: V4DESIGN SERVICE DEFINITION TEMPLATE ... 89

B APPENDIX B: REQUIREMENTS DEFINITION OF V4DESIGN SERVICE 92

C APPENDIX C: SPECS AND MECHANISMS FOR DATA STORAGE AND RETRIEVAL 98

D APPENDIX D: REQUIREMENTS DEFINITION OF A V4DESIGN TOOL 99

E APPENDIX E: REST API SPECIFICATIONS ... 104

D6.2 – V1.0

Page 8

1 INTRODUCTION

The V4Design project aims to create an integrated research and innovation platform that will
bring together State-of-the-Art (SotA) ICT technologies with architecture and video game
designers by incorporating these technologies in renown architecture and video game
authoring tools. The envisioned system will cover areas of design process by reusing visual
and textual content from the web and by compiling data from renown content providers,
which have been included in V4Design project as partners, and repurposing it by extracting
from this material enhanced 3D models, in a semi-automatic or complete automatic way. A
backend system will overview the availability of this content and will be connected with
architecture and video game design authoring tools so as to make it available to them.

The system main stakeholders are video game and architecture designers that want to
create a novel exterior or interior spaces or other kind of artifacts that will be included as an
asset in their creations.

The main goal of this document is to explain in detail the architecture of the proposed
platform including main Technical Requirements (TRs) driving it and the way the proposed
design will enable achieving the ambitious goals set out at the proposal. This document was
devised and written with the User Requirements (URs) document (“D7.2: Use cases,
requirements and evaluation plan”) in mind.

For that purposes, this deliverable starts in the first section by introducing the practice of
technical requirements collection and analysis, arguing about its scope and applicability in
the context of V4Design, before discussing the related methods in gathering requirements
and those selected and applied in the context of the project.

In the second section, we define the domain of V4Design by discussing its usage scenarios
and their related high-level user requirements. This provides an overview of the role
performed by the platform as a service oriented architecture geared to perform user-driven
tasks.

In the third section, we define and discuss the technical requirements and specifications
from the viewpoint of the system architecture, which includes the architecture design, the
logical design of a V4Design service including its generic inner-components, and the data
management approach followed in the platform.

In the fourth section, we discuss the technical specifications of each of the platform
components, including its services, middleware components, and the envisioned user tools.
In each case, we discuss the hardware, software, and resource requirements, the
functionalities, the technical components, the technical requirements as associated, the data
requirements and local storage, messaging and queuing, and non-functional aspects such as
reliability, scalability, security and other concerns.

In the fifth section, we analyse the collected and discussed technical specifications, and draw
conclusions on their implications towards the architecture design of the V4Design platform.

Finally, we conclude by summarizing the findings discussed in this deliverable.

D6.2 – V1.0

Page 9

2 INTRODUCTION TO TECHNICAL REQUIREMENTS

In this document we introduce the technical requirements (TRs) associated with the
development of the V4Design platform in order to facilitate such endeavour and help to
evaluate how the resulting platform meets the expectations of both developers involved in
its creation, and users to which the platform pretends to provide a valuable service.

Before we discuss these technical requirements we briefly introduce general concepts
related to requirements gathering and analysis in order to provide a relevant context for the
activities by which such process was executed in this project. In this section we first
introduce a broad definition of requirements analysis discussing its technical relevance in
software development and architecture design referencing common notions and approaches
deemed relevant to the context of V4Design. Afterwards, we discuss the scope and
applicability of gathering technical requirements and the same context, reflecting on the
global objectives behind requirements analysis, concerns related to the scope of such
activity, and concerns related to the applicability of the results in facilitating and helping the
development of the platform and supporting its evaluation. In addition, we discussed the
popular methods and approaches that are usually followed in gathering technical
requirements, focusing on those that are relevant to V4Design. Then we discuss the
methods that have been chosen for Gathering the requirements of the V4Design platform
and consequently form the bulk of the activities by which the subsequent results have been
obtained.

2.1 Technical requirements analysis: a broad definition

Requirements analysis, also called requirements engineering, is the process of determining
user expectations for a new or modified product or service. These expectations are linked to
technical features that are quantifiable and qualifiable in nature, providing relevant and
detailed guidelines for the implementation. In software engineering, such requirements are
often referred to as functional specifications that together describe how the system
functions from a client viewpoint. They define the system methods, constraints, and
objectives according to the client expectations and vision, and usually form the basis for
early acceptance testing in the software development cycle. Therefore, technical
requirements are usually defined in a realistic and verifiable manner, using description
frameworks. For a more formal definition of requirements, and according to [1], a
requirement describes a condition or capability to which a system must conform; either
derived directly from user needs, or stated in a contract, standard, specification, or other
formally imposed document. In this context, requirements analysis is defined as the process
responsible for identifying, gathering, and studying such requirements to arrive at a
definition of the problem domain and system technical specifications.

In software development, a distinction is usually made between specifications that refer to
the user requirements, and specifications that refer to the technical requirements. The first
is usually written in a non-technical discourse and not always directly related to specific
technical concerns, whereas the second usually describes in details each and every
functionality of every module as well as components of the modules, describing the entire
system flow, and how data is going to flow into and from the system. In order to achieve a
successful software development cycle, both types of specifications (client and system) need

D6.2 – V1.0

Page 10

to be addressed. In most cases, user requirements are determined by engaging with the
designated user base of the system and drafted prior to the technical requirements. These,
can be subsequently developed on the basis of the user requirements, and complemented
to address more generic technical requirements. These generic technical concerns tackle
system attributes such as security, reliability, performance, maintainability, scalability, and
usability, and as constraints on the design of the system. Such requirements are commonly
defined as non-functional requirements.

In fact, even though the conceptualization and conceptual design of software systems
usually precede the formal definition and analysis of requirements, these are important
prerequisites for the design of the system architecture, especially in complex or composite
systems. According to Liao et al [2], requirements analysis is the cornerstone of the software
architecture design (Figure 1).

Figure 1: Relevance of requirements to the design of software architectures [2]

According to Liao, the first task of software development is almost always the domain and
requirement analysis. The addressed requirements are classified as functional requirements
(FRs) that describe specific functions that the system is expected to perform, or non-
functional requirements (NFRs that describe general specifications that the system needs to
meet (e.g. reliability, maintainability, cost, etc.) These requirements are the key input to the
second task, software architecture design. As the architect reviews the requirements and
proceeds with the design, some modifications to the requirements may be needed in order
to insure consistency and coherence among the many elemental descriptors of the system.
The software architecture then guides the implementation of the software, including the
detailed design, coding, component integration, testing, etc.

Therefore, requirements analysis has arguably the most impacting role on the success of
system development, and its stakes in this success can increase dramatically when the
system in question is large, distributed, composite, or complex. In fact, the foremost
objective of requirements analysis is to discover and describe the boundaries of the new
system and how it interacts and integrates in its environment. This wholesome description
helps to planify and streamline the development process, and provides a framework for
detecting and resolving potential conflicts between different user expectations, and

D6.2 – V1.0

Page 11

prioritizing the functionalities that the system must support. In short, requirements analysis
is the bedrock of a healthy and successful project management for software development,
more so when the project in question is large, collaborative, and iteratively developed.

According to Lehman et al. [3], software systems are constantly evolving and adapting to
new requirements in order to survive, and such coevolution between systems and user
expectations is governed and documented through the elicitation, categorization, and
analysis of requirements. These allow to understand and account for maturing trends, tackle
bottlenecks coherently without increasing the system’s complexity and plan efficiently the
selection and integration of the next batch of functionalities. Software maintenance and
evolution of systems was first addressed by Meir M. Lehman in 1969 [4]. Over a period of
twenty years, his research led to the formulation of eight “Laws of Evolution” [5]. Key
findings of his research include that maintenance is comparable to evolutionary
developments and that maintenance decisions are aided by understanding what happens to
systems (and software) over time. In this context, developing, updating, and upgrading
requirements is a critical activity.

Therefore, the effective lifetime or relevance of technical requirements as defined during
the system conceptualization is arguably limited, and should be revisited iteratively (e.g.
through interaction between users, stakeholders and developers). In the case of new
innovative systems, requirements are expected to be refined after initial user testing, once
the system development has reached operational levels (M12), and again after each
comprehensive system evaluation (M18-M20, M26-M28, M34-M36).

There are different frameworks for classifying requirements for analytical purposes, some
are specialized in specific areas of application such as manufacturing and engineering, but
others are more genetic and address the broader field of system design and implementation.
one such framework is FURPS, which stands for “Functionality, Usability, Reliability,
Performance, and Supportability”, was developed by Grady and Caswell in the last 1980s [6],
and still stands as one of the most used for defining both functional and non-functional
software attributes. According to this framework, there are five main functionality concerns
described as:

- Functionality: general functional requirements defined as the feature set.

- Usability: human factors related to user experience, responsiveness, aesthetic
concerns, etc. usually affecting the interface design and the interaction and response
models of the system.

- Reliability: availability of system services and functionalities, failure tolerance and
recovery, accuracy, stability and other similar concerns.

- Performance: resource consumption both in total and per functionality, data
throughput and processing capacity, and scalability.

- Supportability: agility in repair, maintenance policy, testability, modularity,
configurability and other similar concerns.

The relevance of these concerns can vary from an architecture to another, and also
according to the development stage in which the architecture is found. At the early stage of
development, and especially for innovative solutions that cannot rely on similar existing
solutions as reference, the main concern of requirements is the functionality. As the

D6.2 – V1.0

Page 12

development cycle progresses, other concerns gain importance, for instance usability, when
the user experience design and implementation can be addressed.

2.2 Scope and applicability of technical requirements analysis in V4Design

V4Design aims to develop a service-oriented platform that enables users to find and reuse
digital assets in games, virtual environments, 3D designs, and others. The platform is
composed of a series of specialized services, each performing a specific function. The
platform concept and its services have been defined in “D6.1 Roadmap towards the
implementation of the V4Design platform” (see D6.2, section 2 and 3). Accordingly, the
V4Design platform is conceived as a distributed system that loosely integrates different
services and technical components. These components communicate using a message bus
solution that allows them to exchange information about their activities, the data that they
process and the results that they generate as these become available. In addition, the
V4Design platform includes a centralized data repository data storage system that
safeguards the raw data collected by the platform and the data generated by its services.
The platform integrates several user tools that together represent the platform’s user
interface. These tools communicate with the platform backend (services and data storage)
via an API designed to abscond the backend mechanisms from the user tools in order to
streamline user interaction.

The design of such distributed system is a complicated endeavour because it entails many
decisions that could impact the architecture scalability and performance on the long run.
Therefore, understanding the Technical Requirements (TRs) of the intended architecture
design is critical before engaging the design and development of its integrated components.
In order to develop and evaluate the V4Design platform, it is essential that its technical
requirements and specifications be elaborated in a manner that serves both as a reference
and a benchmark. For this purpose, and early-on in the platform conceptualization, design,
and implementation cycle, these requirements are defined and analysed systematically. For
this purpose, it is important to define the scope of this exercise and its applicability.

In order to elicit the V4Design platform requirements in a useful manner, we first define the
following global objectives of requirements analysis:

- Create a reference document that details the technical requirements of the
platform, functional as well as non-functional requirements, to serve as guidelines
for its development, and to ensure that all stakeholders agree on what the platform
is supposed to accomplish.

- Describe the tasks that the platform will be able to perform concisely and clearly for
its users, and the operational concerns that relate to them.

- Define the specific functionalities and technical specifications of each service
individually in order to facilitate its development, integration, and evaluation during
the course of the project.

- Gather the technical specifications, constraints, and implications of the platform
architecture design in a manner that facilitates the integration of individual modules
and services.

- Define the performance metrics that should govern the platform and its components
in a manner that facilitates the subsequent evaluation of the platform.

D6.2 – V1.0

Page 13

In order to gather the requirements in the manner that accomplishes these objectives, we
must follow an approach that takes advantage of the related information sources available
in the context of the project, and the descriptive documentation that elicit how the platform
is expected to function, to be used, and to provide service. In addition, we must involve the
stakeholders (users as well as product owners) in the process of gathering these
requirements, both for elemental aspects (such as services) and for global aspects (e.g.
architecture design specifications).

Therefore we define the following list of concerns that should be addressed at this stage
during the analysis of the requirements:

- Elicit technical requirements that stem from the project's defined use cases and use
scenarios, which form the bulk of the user requirements. although use cases and use
scenarios (D7.2) may evolve during the project, we can now derive initial set of user
requirements that is expected to encompass fundamentally important functional
requirements that relate to the technical objectives of the project and the overall
role that the platform is expected to play within its users ecosystem.

- Elicit technical requirements that stem from the platform’s architecture and
architecture design, which act as constraints and technical specifications for the
services envisioned that will be integrated in the platform.in addition these
requirements will describe the manner by which the platform will be deployed,
serviced, and scaled.

- Elicit technical requirements that stem from the nature of each envisioned service
and technical component of the platform in an elementary manner and separately
for each component, including backend technical components, middleware
components, user tools, and others.

Once these requirements have been gathered, we should argue about the applicability and
the context of developing, testing and evaluating, and deploying the platform. This should
explain how the requirements would be employed in the context of the project, and the
relevance do the different activities, objectives, and milestones.

Therefore we define the following list of concerns related to the applicability of
requirements that should be addressed on the basis of the analysis of gathered
requirements:

- Describe or classify technical requirements according to their relevance for the
platform as a whole, and for the components as elemental modules.

- Differentiate between requirements that are expected to influence the development
of the platform components, acting as guidelines or reference that constrains such
activities, and requirements that are expected to act as a benchmark for the
evaluation of the platform and its components.

- Evaluate the relevance of the gathered requirements with relation to the planned
iterative versions of the platform, separating between long-term requirements or
requirements that are not expected to change, and other requirements that are
more relevant to the initial or intermediate versions planned according to the
development plan.

D6.2 – V1.0

Page 14

2.3 Methods and approaches for gathering specifications

Before we discuss a systematic approach to gathering technical requirements, it is worth
noting why such an approach is needed. In fact, Requirements gathering is a critical,
foundational step in all system development. It will either set the project on a course to
success if done well or doom it to failure if done poorly. As previously argued, each case of
system development can differ from others in many aspects that impact how the
requirements should be defined in order to provide solid guidelines for development and
evaluation. There are many difficulties related to gathering requirements for instance:

- Prospective users are not always able to identify their specific requirements in a clear
manner to the development team. In case of new systems or innovative systems, it is
hard to engage potential users early-on in the process of conceptualization, and
acquire clear requirements since these potential users may not have a clear idea
about their own expectations.

- Usually, “big picture” requirements are gathered first because they are the easiest to
define and describe since they are implied by the system concept and general
purpose. But requirements that describe more in-depth and/or localized concerns
are generally much more difficult to detect, gather and describe effectively.

- There is a fundamental difference between user stories and functionalities that the
system could support. While usually the functionalities are extracted from user
stories and define according to the details of the stories, it is difficult to assume that
specific user stories represent the overall expected functionalities because, while
user stories are usually drafted to describe how is system as envisioned to work and
function, it is seldom possible to make sure that these stories represent the most
genetic aspect of the system, or the most genetic functionalities that the system
must support. This is why design and implementation is undertaken to ensure that
the developed system adheres intimately to the expectations of its users, evaluating
its role and performance at each stage or at each iteration, at making necessary
adjustments to its design, functionality, and performance.

- Finally, in the relevant case where the system development is assumed by a
distributed team or composite team, or if the system is envisioned to integrate
components each developed by a different entity, defining and gathering
requirements in a coherent manner is also difficult because it entails the need to
remedy different and sometimes contradictory approaches to the implementation of
processes, some of which are shared among the different components.

- Finally, traducing requirements of different types into clear technical requirements
that can be measured and evaluated is not a straightforward task, and relies on the
ability of the system architects to adhere to a common and detailed vision of the
architecture.

Many techniques are available for gathering technical requirements. Each has value in
certain circumstances, and in many cases, there is an inherent need to rely on multiple
techniques to gain a complete picture from a diverse set of clients and stakeholders. The
most popular techniques for gathering requirements are the following:

D6.2 – V1.0

Page 15

Document analysis

This technique is usually the precursor for gathering requirements, or the first activity
performed in this context. The analysis of existing documentations that describe the system
concept, objectives, expected outcome, development process and plan, the needs to which
the system is ought to respond, the users and their profiles, and any other preliminary
documentation. The information extracted from these documents cannot provide a
comprehensive and complete set of technical requirements; nevertheless it can define the
general traits of the system and its most pervasive characteristics. Such specifications would
delimit other requirements gathering activities and help them to focus on concerns relevant
to the development and evaluation of the system.

One-on-one interviews

This technique is the most common for gathering requirements, by which clients or (future)
users of the system are interviewed individually and asked about their expectations and
needs, and the manner by which they envision the system. These interviews are usually
planned ahead, and can be entirely or partially structured. In general, open-ended questions
work best to extract the interviewee’s viewpoint and vision, which closed questions aim to
obtain specific answers to specific concerns. In case of innovative systems or new systems
with no comparative references, probing questions can uncover hidden requirements and
can shed light on unforeseen aspects that can impact the original concept of the system.

Group interviews and focus sessions

Group interviews are similar to the one-on-one interview in many aspects, but they usually
involve several interviewees. They are two known (but not always disjoint) types of group
interviews, one that involve people with similar role and background, and one that involve
representatives of the different profiles that will be involved with the system (e.g. users,
administrators, mediators, learners, teachers, experts, advanced, etc.). Group interviews
usually require more preparation and more formality to obtain the information required
from all the participants. Keeping the group focused on the tasks is generally the main
challenge of this approach, but it can result in a rich set of requirements in a generally short
period of time.

Joint application development sessions

This activity targets the developers and the technical profiles involved in the system design,
architecture, and development. It is a popular approach to extract non-functional
requirements, and to establish a comprehensive framework for the development,
implementation, and deployment of the system. These sessions share a lot of similarities
with group interviews, and they usually are prolonged until all the objectives are met and a
detailed and comprehensive set of requirements is obtained.

Questionnaires and specification templates

Templates are arguably the most effective approach to gathering technical requirements,
and it is a common practice to circulate structured questionnaires prior to focused
interviews with system architects and product owners, since they help to prepare these
interviews by focusing them on the remaining ambiguities. Questionnaires are effective in
involving a large number of stakeholders in the process of gathering requirements, and their
structure helps to identify “popular” or generic requirements easily, and isolate

D6.2 – V1.0

Page 16

requirements that are specific to certain situations but not others. Also, this activity can
harmonize the visions of different architects and system developers involved in
conceptualizing and implementing the solution.

Prototyping

Prototyping is a relatively modern technique for gathering technical requirements, which
stem from agile approaches to system implementation. It is a “try and learn” approach to
development that pretends to increase the speed of development. Based on a preliminary
set of requirements that is extracted from the system concept and overall definition, a quick-
and-dirty prototype is implemented for evaluation. It helps to concretize the approach
defined by the system and illustrate the objectives more concretely to the involved
stakeholders. In essence, this approach works well with smaller systems that are more user-
oriented and interaction-driven, or cantered on user-experience. However, it may not work
well with larger, more complex systems as these are harder to simplify and prototype
effectively without a considerable investment.

Use cases and scenarios

Use cases are basically stories that describe how discrete processes work. These stories
include specific profiles called “actors” describe how the system works from their
perspective. Use cases may be easier for the users to articulate, and they can be later
distilled into the more specific detailed requirements. On their own, use cases may not
describe the requirements in a complete manner, they tend to focus on clear processes that
are directly implied by the system concept. Use cases are also defined by the stakeholders in
charge of conceptualizing and developing the system as a manner to illustrate the concept to
potential users. Overall, use cases play a diversified role in the development process, and
drafting use cases is a cheap and straightforward way to provide a basic system description.
Therefore, they are often used as a precursor to gathering requirements.

There are other, less popular methods for extracting technical requirements that include
brainstorming sessions organized with stakeholders, request for proposals that resemble
questionnaires but are usually structured and drafted by the clients instead of the system
analysts, among others. In some cases, experiments are conducted to extract data that in
turn is employed to extract specifications with technical implications. However, these
approaches are deemed less relevant for V4Design.

2.3.1 Selected approaches for gathering requirements in V4Design

In the context of V4Design, and in order to extract the technical specifications of the
envisioned platform and technical requirements for the system components from
collaborating partners, we follow a composite technique that groups the methods described
in Table 1 below.

D6.2 – V1.0

Page 17

Technique Description Expected outcomes

Document Analysis We analyse the project proposal and plan of
work, and the information regarding technical
specifications made available by the partners
on the wiki site.

General description of the architecture
requirements, and technical objectives to be
met by the system.

Use scenarios and use
cases

We study the defined use cases and
scenarios, declared in D7.2) that explicitly
state the user processes that the platform
should support to accomplish specific
objectives.

This allows us to get the user requirements and
prioritise them according to the use cases, as
these will be implemented in series. The user
requirements are then mapped onto the
technical requirements.

Component definition
survey

We conduct a template-based survey with the
developers/owners of V4Design components
that are to be integrated in the platform (see
appendices A, B and C)

The characteristics and specifications of each
service have been defined by their owners,
including a correlation between the envisioned
functionalities and the technical requirements..

Interviews We interview developers/owners of V4Design
components to establish a systematic
understanding of critical technical aspects,
and debate different alternatives for
addressing them.

Detailed definition of critical technical
specifications that impact the integration of the
architecture and the performance of its
modules.

Table 1: selected techniques for gathering requirements

From the document analysis, an overview of the technical specifications of the platform is
extracted, described, and documented in a traceable manner. This includes a definition of
the architecture model adopted for the platform, which defines the platform components
including the services that integrates, the middleware solutions that that utilizes, the
manner by which it is deployed in a production environment, and the approach it follows to
interact and provide service for its users.

Based on the drafted user scenarios and use cases, the main functional requirements are
extracted and formally defined both on platform level and service level. these requirements
encapsulate the user expectations and the main functional aspects of the platform, which
ought to be met, evaluated, and valued a different stages and the project.

The component definition survey, which was conducted at the beginning of the project,
provides an in-depth definition of each component that is integrated in the architecture of
the platform. It reveals the original plans that the teams responsible for developing the have
devised in order to address different genetic technical specifications, such as scalability, data
management, consistency, expected throughput, among others. These specifications
represent the non-functional requirements of the platform defined on a component level. In
complementation, the requirements definition survey, which was conducted during the
development of this deliverable, cantered on detailing the requirements of each platform
component, complimenting previously obtained information and knowledge about the
inner-workings of these components with additional information that illustrate how these
components are expected to meet their objectives, how they would be hosted or deployed,
how they would treat data locally and globally within the ecosystem of the platform, how
they would communicate with other related platform components, and to what purpose

D6.2 – V1.0

Page 18

would they establish such communication. In essence, the survey aimed at completing the
initial exercise for gathering requirements which is represented by the previously mentioned
activities.

Finally, and based on specific necessities to obtain information or to elaborate on specific
concerns related to the definition of component-level requirements, several open-ended
and mostly unstructured interviews have been conducted with the owners of specific
services and platform middleware. These interviews explain how to complete the
requirements gathering exercise at this stage in the project.

Although this approach for gathering the technical requirements (TRs) of the V4Design
platform has generated a comprehensive set of requirements, both functional and non-
functional, both top level (generic) and low level (specific), and both platform-related and
components-related, there is a need to revisit these requirements at several stages in the
project. This should be done especially after the completion of evaluation activities that aim
to ascertain how different versions of the platform under development meet the overall
expectations and the specific requirements originally conceived at the beginning of the
project, and representing the motivation and justification behind such endeavour.

During the development of the platform and its components, the requirements defined in
this exercise should serve as guidelines and evaluation criteria under which the development
activities must be governed. This is made easy by separating platform level requirements
(mainly architecture design specifications) from component level requirements (related to
elementary functions implemented by each component), and therefore each team of
developers should be able to isolate easily the requirements pertaining to the component it
is developing.

D6.2 – V1.0

Page 19

3 DOMAIN DEFINITION: OVERVIEW OF V4DESIGN USAGE
SCENARIOS AND USE CASES

Four different use cases have been defined to describe the user expectations related to the
platform. These use cases include a total of six different scenarios two of which being a slight
variation of a single-use case. In the following, we describe these use cases and scenarios
concisely. We then analyse their direct implications for the platform in terms of
requirements, especially what pertains to the user expectations and the role that the
platform should perform for them in each case. More detailed descriptions of these use
cases in the deliverable “D7.2 Initial use case scenarios and user requirements”.

3.1 V4Design use cases and scenarios

In the following, we offer a summarized description of the V4Design use cases and scenarios,
describing in each case the overall theme and interaction scenario, and the related high-level
user requirements as defined in D7.1. We then use this information as a reference to
contextualize other technical requirements in the following section.

Use Case 1: Architectural design, related to existing or historical buildings and their
environments.

Users: Architects, designers and artists

Scenario 1.1: Support the design process of pavilions, land art, scenography (Landscape). 3D
models of buildings, debris, the surrounding landscape (e.g. from ancient times up until the
19th century) will be extracted to support the design process of large objects (pavilions, land
art, interior architecture etc.).

Scenario 1.2: Architectural design, related to existing or historical buildings and their
environments (Building). 3D models, images and maps of the immediate vicinity and
reference models of similar size and style, will be used to study various design options.

HLUR HLUR Title HLUR Description

HLUR_1.1 Extraction of 3D models
Architects and designers can extract 3D models of places, buildings
and objects out of videos and images of buildings, landscapes,
artworks or sensitive space elements.

HLUR_1.2 Extraction of CG assets
Architects and designers can extract 3D textures, computer
graphics (CG) materials from 2D images of buildings, landscapes,
artworks or sensitive space elements.

HLUR_1.3
Architectural design tool to
form innovative ideas

Architects and designers have a tool that can assist in formulating
new, innovative architectural ideas

HLUR_1.4 Multiplicity of assets
Assets can be 3D objects, 2D videos/images, textual information,
audio etc.

HLUR_1.5
User interaction and
control

Architects and designers will be able to access the 3D assets (3D
models, point clouds, Meshes) in a 3D environment and they will be
able to edit and manipulate them.

D6.2 – V1.0

Page 20

HLUR_1.6 Extraction of 2D assets Architects and designers can extract 2D patterns of artworks and
culturally sensitive space elements in editable vector format

HLUR_1.7
Asset accessibility and
searching refinement

Architects and designers can have access to a variety of extracted
assets and have the ability to filter and refine their search results.

HLUR_1.8
Related and suggested
assets

Architects and designers can have access to a variety of other
related or suggested assets to the asset they are working on.

Table 2: High-level user requirements for use case 1 (D7.2 - section 3.1.5)

Use Case 2: Architectural design, related to artworks, historic or stylistic elements

Users: Architects, interior architects and product designers

Scenario 2.1: Architectural design, related to artworks, historic or stylistic elements (Object,
Interiors). 3D models inspired by artworks of a specific style, historic spatial elements and
arrangements will be easily accessed for the design, modelling and actual fabrication of
novel collections of small scale industrial objects (e.g. furniture), with reference to these
styles.

HLUR HLUR Title HLUR Description

HLUR_2.1
Extraction of 3D
models

Architects and designers can extract 3D models of places, buildings and
objects out of videos and images of buildings, landscapes, artworks or
sensitive space elements.

HLUR_2.2 Extraction of CG assets
Architects and designers can extract 3D textures, cg materials from 2D
images of buildings, landscapes, artworks or sensitive space elements.

HLUR_2.3
Architectural design
tool to form innovative
ideas

Architects and designers have a tool that can assist in formulating new,
innovative architectural ideas

HLUR_2.4 Multiplicity of assets
Assets can be 3D objects, 2D videos/images, textual information, audio
etc.

HLUR_2.5
User interaction and
control

Architects and designers will be able to access the 3D assets (3D models,
point clouds, Meshes) in an 3D environment and they will be able to edit
and manipulate them.

HLUR_2.6 Extraction of 2D assets Architects and designers can extract 2D patterns of artworks and
culturally sensitive space elements in editable vector format

HLUR_2.7
Asset accessibility and
searching refinement

Architects and designers can have access to a variety of extracted assets
and have the ability to filter and refine their search results.

HLUR_2.8
Related and suggested
assets

Architects/Designers and game developers can have access to a variety of
other related or suggested assets to the asset they are working on.

Table 3: High-level user requirements for use case 2 (D7.2 section 3.2.5)

Use Case 3: Design of virtual environments, related to TV series and VR video games

D6.2 – V1.0

Page 21

Users: Visual content producers (film, TV industries)

Scenario 3.1: Creation of a VR video game based on the scenes of a telenovela. 3D models of
interior elements and scenes will be extracted from existing video contents to build
interactive media and VR games with the same assets, scenes and characters.

HLUR HLUR Title HLUR Description

HLUR_3.1 Multiplicity of assets
Assets can be 3D objects, 2D videos/images, textual information, audio
etc.

HLUR_3.2
Related and suggested
assets

Game developers can have access to a variety of other related or
suggested assets to the asset they are working on.

HLUR_3.3
Immersive educational
environment

The student finds her-/himself in an environment, where she or he can
study by watching a 2D video (= episode of Nico’s Weg) and do the
corresponding exercises with a clear and comprehensive UI and
gameplay that meets the requirements in regard to language learning
didactic.

HLUR_3.4 State of the art gameplay
Game developers envision state of the art gameplay (with gaming
elements) that takes place in three dimensional environments inspired
by 2D content (Nico’s Weg)

HLUR_3.5 Avatar Extraction
The components should also be able to extract the following: (i) Avatar,
structure, etc. from DW telenovela; (ii) Avatar, structure, etc. from non-
DW footage

HLUR_3.6
Tool for Language related
Game Design Game developers would like to have a tool that can assist in the design

of new, immersive VR environments for language learning purposes

Table 4: High-level user requirements for use case 3 (D7.2 section 3.3.5)

Use Case 4: Design of virtual environments, related to actual news for VR (re-) living the date

Users: Worldwide users that want to live or relive news events in a VR environment

Scenario 4.1: Creation of a VR application based on historic events. Selected parts of past
and more recent news coverage which will be transformed to 3D and VR environment that
will allow users to have a more realistic information experience.

HLUR HLUR Title HLUR Description

HLUR_4.1 Multiplicity of assets Assets can be 3D objects, 2D videos/images, textual information, audio
etc.

HLUR_4.2 User interaction and
control

Game developers will be able to access the 3D assets (3D models, point
clouds, Meshes) in an 3D environment and they will be able to edit and
manipulate them.

HLUR_4.3 Extraction of 2D assets Game developers can extract 2D patterns of artworks and culturally
sensitive space elements in editable vector format

D6.2 – V1.0

Page 22

HLUR_4.4 Related and suggested
assets

Game developers can have access to a variety of other related or
suggested assets to the asset they are working on.

HLUR_4.5 Multiple environments Ability to develop multiple environments for the same scene and
change them using scrollbar.

HLUR_4.6 Data about the initial
asset

Get data about the video that an asset is extracted from

HLUR_4.7 Tool for History related
Game Design

Game developers would like to have a tool that can assist in the design
of new, immersive VR environments for reliving a significant past event

Table 5: High-level user requirements for use case 4 (D7.2 section 3.4.5)

Although the definition of these use cases is broad and general, several high-level user
requirements can be extracted for each case, providing reference for the specific needs that
should be covered under these cases. These high-level requirements correlate with more
elementary requirements that describe specific functions and functionalities that ought to
be achieved by the system due to the broad nature of high-level user requirements, these
can share several elementary requirements, or in other words each elementary user
requirements can be associated with one or more high level requirements.

The complete set of identified and described user requirements is presented in D7.1 and
D7.2. This set includes four types of user requirements classified according to the MoSCoW
prioritization technique [6], which divides requirements into four priority sets, being: must-
have, should-have, could-have, and would-have (see D7.2). The first two sets “must-have”
and “should-have” represent the essential requirements that together describe the Minimal
Viable Product or the most reduced version of the platform that meets the objectives behind
its conceptualization and development. We therefore qualify these essential requirements
as critical and important, and prioritize the assessment and evaluation of the developed
components and services accordingly.

3.2 V4Design user profiles and user requirements

In the course of the use cases, several user profiles have been identified as primary targets
for the V4Design platform. Accordingly, the platform should address their needs and
expectations effectively, and as defined by the User Requirements (UR), described in D7.2.
These profiles include:

- Architects (interior, exterior, urban, etc.)

- Artists and Designers (products, games, etc.)

- Visual content producers (cinema, TV, etc.)

- Others (requirements not specifically associated with any profile)

The user requirements associated with each profile differ from those associated with
another. These differences are not negligible, as it can be verified by comparing what each
technically implies (tables 6, 7, 8 and 9). For instance, the requirements of designers centre
of search and extraction of assets, while architects and content providers use the system not
only to find interesting assets, but also to manipulate them and use them inside the system’s

D6.2 – V1.0

Page 23

tools. Content providers also have a crucial need to upload and process data on demand, a
function that designers do not consider as highly relevant.

From a technical stance, all the user requirements converge on a coherent set of
functionalities that should be implemented and organized. Some of these requirements are
tool-cantered (e.g. GUI and interaction related requirements), while others are directly
related to the backend of this service architecture (e.g. get data, upload and process new
data, etc.).

UR# Implied technical requirements

UR_56 get sizes of objects detected in a video

UR_57 get textual and semantic data, and text summaries of an asset

UR_58 get asset extended semantic analysis

UR_59 search for audio assets

UR_64 get asset metadata

UR_66 search for available 3D models

UR_67 get lighting, colour grading, skymap setting from image or video

UR_1 upload videos/images

UR_70 access to high-quality 3D models

Table 6: Designer-specific user requirements

UR# Implied technical requirements

UR_48 process data on demand

UR_51 get 3D model with metadata

UR_52 get asset catalogue

UR_53, UR_54, UR_55,
UR_60, UR_61

Features of GUI

Table 7: Content provider-specific user requirements

UR# Implied technical requirements

UR_3, UR_4, UR_41 get textures from an asset

UR_5 --> UR_9 Front-end extraction of different aspects

D6.2 – V1.0

Page 24

UR_30 --> UR_40, UR_42,
UR_43, UR_45, UR_46

Features of GUI

UR_44, UR_2 get 3D model with metadata

UR_47 Tool is open-source

UR_1 upload videos/images

UR_70 access to high-quality 3D models

Table 8: Architect-specific user requirements

UR_10, UR_20, UR_23,
UR_24

get semantic data / tags

UR_11, UR_12, UR_15,
UR_16, UR_19, UR_22

get asset metadata

UR_18 get aesthetics from an asset

UR_14, UR_21, UR_26,
UR_50, UR_68

get 3D model with metadata

UR_27, UR_41 get textures from an asset

UR_29 get aesthetics from an asset

UR_62 import asset

UR_25, UR_28, UR_49,
UR_63, UR_65, UR_68,
UR_69

tool GUI features

Table 9: Other user requirements

This clusterisation of user requirements by user profile will provide a reference for the
integration of the platform components and its evaluation from a technical stance. The
cohesion of functionalities by user profile may indicate where components should be
chained together and where they should be integrated in an ad-hoc manner. This is explored
in more details in section 5.

D6.2 – V1.0

Page 25

4 ARCHITECTURE DESIGN SPECIFICATIONS AND TECHNICAL
REQUIREMENTS

In general, requirements specify what a system must do, while its architecture design
specifications describe how it will be organized in order to fulfil these requirements.
Intuitively, one might consider that the definition of requirements precedes and act as a
precursor for the architecture design. However, these two tasks overlap to a large extent.

This relationship between architecture design and system architecture design has been
studied by Clements et al., showing how they are intertwined [8]. The essential outcomes
expected from the system are basically requirements that define the objectives of the
system and the goals it should achieve. They determine and delimit the design of the
architecture, for instance they imply how the system should perform, how it should reach its
users and react to their needs, and how it should fit within the ecosystem of existing systems
and services related to the field or area of application of the system.

On the other hand, while essential outcomes represent an early set of requirements upon
which the architecture design is based, the design process itself can reveal challenges or
restrictions for the system components. These discovered challenges, which are usually
more elaborate in distributed architectures and composite or large-scale systems, are also a
type of requirements that individual system components must meet. In general, these
challenges stem from possible conflicts between the essential outcomes and therefore need
to be addressed, or from constraints related to the envisioned deployment environment of
the system, or similar concerns.

Finally, the finalized design of the architecture itself and the choices it entails do impose
some overall constraints on the system. These constraints are essential for the proper
functioning of the chosen architecture model and the successful implementation of the
system. For instance, in order for an architecture design to work, engineers could specify a
minimum throughput for system components, or dictate a data transfer policy, and so on.
For instance, if the architecture design implies a loose integration model for the system
components, then this constraint is considered as a requirement that the development of
the system components must meet.

In this context, we introduce the notion of architecture design specifications, which
describe any specification that is architecturally significant. Such requirements mandate how
the system architecture is conceived, designed, and implemented, and are seldom changed
after the initial system implementation, unless a radical change in the system’s nature, goals,
or performance is required.

4.1 Architecture design of the V4Design Platform

In the following figure 2, we describe the logical design of the V4Design platform, which
shows how the different logic elements are organized. The Platform is composed of eight
services (in black), each specialized in performing a specific function with the data collected
and stored in the platform. In addition, the platform incorporates two user tools (in grey)
that provide service for the user profiles targeted by the platform. The platform middleware
(in yellow) is composed of two components: a message bus through which all
communication with and between the services is channelled; and a REST API that provides

D6.2 – V1.0

Page 26

interfacing capacity for the user tools with the rest of the platform. Finally, the platform
integrates a data storage and retrieval system capable of connecting to external sources and
acquiring raw data, which is stored alongside the data generated and processed by the
services.

Figure 2: logical design of the platform architecture

Based on this architecture design and the development plan conceived for the platform and
documented in D6.1, a logical design for the first version of the platform has been
developed. This design is shown in the following figure 3. Accordingly, the first version of the
platform will incorporate at most five different servers, housing the following components:
Four distinct services, the message bus, the REST API, a representation or abstraction of the
user tools (e.g. a demo web page with query and retrieval capacity), and the data storage
and retrieval system. Each of these components will be a primitive and limited version of the
envisioned concept. In some cases, processes will be simulated inside components in order
to support the development of cross-service processes.

Distributed hosting

The selected model of the platform integration dictates that services are independent
components, each hosted on its own server that is provided and cared for by the service
owner. Some individual services can be combined and hosted on a single server, and in this
case this set of individual services will be considered as a single service from a platform
perspective, communicating with the rest of the platform components through a single
interface, or a single message encoder/decoder solution.

Integration model

The integration model selected for the V4Design platform is a distributed architecture with a
single centralized storage, and a message bus that plays a centralized role in integrating the
different services and components. Each service and middleware component should

D6.2 – V1.0

Page 27

establish communication with the message bus in order to send and receive data and
requests to other services.

Figure 3: logical design of the first version of the platform

Security

Each service will be responsible for its own security on a local level, especially if it is
communicating with external APIs or if it supports user interaction.

The message bus will provide an extra security layer by asking each component to
authenticate themselves in order to communicate with the rest of the platform components.

The user tools are responsible to manage their users’ authentication and permissions, and
administrate their usage cota. The tools can centralize these functionalities under the Rest
API middleware, or they can choose to address them locally.

Performance and scalability

The platform should be able to support more than a 1000 user per instance, amounting to
an estimated 100 simultaneous connections, without affecting the platform performance.
Since the platform manages media objects and data objects of large size, loading and
safeguarding data may be delayed or limited by the data transfer capacities of the networks.
Policies for alleviating data exchange between the platform’s front-end (user tools) and
backend (services and data storage) should be adopted.

Each service should be scalable in a manner that accommodates the long-term requirements
of the platform. Therefore, services that are originally designed to process a single request at
a time should implement a scalability paradigm that overcomes this limitation. This is
required for the final version of the integrated platform and could include the introduction
of (or at least support for) parallel processing or the deployment of several instances of the
service.

D6.2 – V1.0

Page 28

Consistency and quality of service

In the deployment environment, the services should be available continuously. Periodical
upgrades and maintenance activity can be scheduled during which components and services
can be upgraded and maintained. Services and components should be able to recover in the
case of failure. Fatal failures from which recovery is impossible should be logged and
analysed. Fatal failures that affect the entire platform, for instance failure of the message
bus or the REST API, or the data warehouse, should be reported to the service owners.

Maintaining a separate testing and development environment

For each component, a separate testing and development environment should be
maintained in order to test and validate new development versions prior to its deployment
in the production environment where stability and performance are key. Components
hosted on development environments may use the same middleware components of the
production environment.

Data management

A single data warehouse service will be built for V4Design. It will host and service all types of
data, including semantic and non-semantic data, generated and required by the services,
and provided to the users via the user tools.

 In order to retrieve data from the data warehouse, all services are expected to issue a
“query message” through the message bus, and cannot access data directly from the data
warehouse (unless they already know the URIs of the requested data objects). The data
warehouse will in turn respond with a “data ready” message that contains the URIs of
requested objects.

The data warehouse will allow services to ingest data objects directly through a “push”
mechanism. A message is broadcasted by the data warehouse when new data (raw or
processed) is ingested/stored.

The services can store some data locally for performance and optimization reasons, but
cannot provide locally-stored data to other services. Data queries are only allowed for the
data storage module(s). Services can implement data queues when deemed necessary to
streamline data locally.

Messaging

The platform message bus will be built on the basis of Apache Active MQ open-source
solution. Each service or middleware component should establish communication with the
platform’s message bus in order to interact with other platform components.

Services and components will be required to authenticate themselves through the message
bus for security reasons. Support for this feature is not required for the first version of the
platform.

Encoding and decoding messages from the message bus is a task pertinent to each system
component that uses the message bus to communicate with other components. The
messages are encoded following the AMQP protocol.

Many libraries for encoding in AMQP are available for different development languages and
frameworks (e.g. see activemq.apache.org/cross-language-clients.html). The message’s

D6.2 – V1.0

Page 29

content encoding should follow an agreed schema developed collaboratively by the teams
responsible for developing the platform services and components. The CAP protocol should
serve as a reference for this schema, especially the manner by which it describes the data
objects associated to the message.

There are 4 types of messages supported by the message bus:

- Broadcast: a service broadcasts a message to inform other services of changes in its
status-quo, including the arrival of new data, the completion of a process, and so on.

- Service-to--Service: a service places a request to another service, which could include
a query for data, a trigger for a function, and so on.

- I’m alive: the service informs the message bus that it is up and running

- I’m shutting down /Unavailable: the service informs the message bus that it is going
offline. The message bus will also periodically check the services reachability
automatically.

Logging

Each component or service integrated in the platform can log and track its activity, the data
it processes, and the results it generates. No centralized logging system will be
implemented. For instance, the message bus will log all exchanged messages and will track
the availability of the services, and the REST API will log user activity and the queries they
perform.

All logging information and data can be kept for a limited period of time that befits the
objectives behind saving it (for instance, tracking performance). This period should not
exceed six months. Afterwards, logging information and data should be flushed from local
storages.

User data and privacy

The platform tools can collect data on their users in accordance with EU privacy laws. In this
case, users are to be explicitly notified and permission solicited on an individual basis before
data is collected. In case a user does not approve the request for storing data pertinent to
his or her use of the system, the user should be allowed to use the platform without any
restrictions.

No user data should be shared with 3rd parties under any circumstances. In case such
exchange is deemed necessary for the success of the platform, or for any critical purpose,
permission for such an exchange should be granted by the V4Design project coordinator,
after explicit consultation with the consortium.

Data backup and restore policy

Backup of critical data of dynamic nature (e.g. reference sets, training benchmarks, raw data
collected, etc.) should be performed on a local level, i.e. by each service and component
separately. Local backup policies should be drafted in accordance with the needs of each
service or component, and the type of data stored locally.

Backup policies and mainly relevant for the platform’s centralized data storage, where
virtually all data collected, processed, and generated in the platform is stored.

Restoration is performed in the event of data corruption or data loss.

D6.2 – V1.0

Page 30

Use of external libraries, tools, and software components

All software components developed by third parties and utilized in the development of the
platform services and components should be open-source with a creative-commons license
that does not limit, inhibit, or curtain any possible exploitation of the V4Design platform and
its services. The use of off-the-shelf legacy solutions should be avoided.

4.2 Logical design of a V4Design service

In order to standardize and facilitate the development of services for the V4Design platform,
an abstract model that reflects a service’s conceptual design was devised to encapsulate the
most important architectural requirements at service-level. This model is shown in the
following figure 4.

Figure 4: Conceptual design of a V4Design service.

According to this model, a service is a system component that is hosted on its own server
and communicates with the rest of the platform components via the message bus. It is
composed of five logical units being:

The message coder / decoder: responsible for encoding and decoding messages in the
proper format to interface with the message bus.

The Authentication unit: responsible for maintaining and providing the necessary
credentials for the service in order to authenticate itself in the platform through the
message bus.

The service core: is the unit that encapsulates the core algorithm and/or method(s) provided
by the service to the platform. It represents the service’s contribution to the processes
supported on the level of the platform.

The Queue: is an internal queuing mechanism that stores received requests and prioritises
them according to the local policy of the service, acting as a buffer between the service core
and the message bus.

D6.2 – V1.0

Page 31

The local storage: is a data storage unit used exclusively by the service core for storing or
buffering data in order to support the execution of the methods encapsulated in the service
core.

4.3 Data management specifications

A “data object” is a self-contained piece of data that components treat as a singular unit.
Data objects can be related and chained. They contain metadata fields that describe their
origin, characteristics, and purpose. The following logical diagram explains how the data
objects are described in the context of V4Design services and platform components.

Figure 5: Data management at component-level

Each component can have five different relations with data:

1- First, the component reads data stored in the data storage component to process locally.
Usually, this describes the operations by which the component fetches raw data from the
Data Storage upon receiving a notification of its availability. This raw data can be relevant to
different components of the platform, these are notified through a broadcast message
indicating the date the elements’ URIs or parameters for retrieval from the Data Storage.

2- Second, the component reads data generated by other components in the architecture,
and processes this data locally. This data is not raw in the sense that it has been previously
processed by another system component, and is considered result generated by the specific
component.

3- Third, the component generates data and wishes to store it in the data storage. This data
represents the results generated by this component, and is final in a sense that it is ready for
user consumption.

4- Fourth, the component generates intermediary data in the sense that other services
should use it as input to generate consumption-ready data. The component wishes to make
this data available for these other consumers.

D6.2 – V1.0

Page 32

5- Fifth, for reasons pertaining to the nature of the processes that the component
implements, and in order to improve performance in some cases, or make the functioning
more agile. The components may choose to store data locally. This data may not be served
or exchanged with any other component in the architecture, and is considered local data
only accessible and used by the specific component. This data can be cached information,
partially processed data objects, buffered input data, and buffered output data, among
other applications.

As previously stated, the platform will provide a centralized endpoint (Data Storage and
Retrieval System) through which modules will be able to store and retrieve data objects. The
following figure 6 shows the logical design of this component, which includes the following
items:

● The Core Data Storage Module, a web service that encapsulates all the methods that
the project’s applications can access for data handling. It comprises the only
connection point between the applications and the databases of the project. The
module acts as the main read/write interface of the platform and its main
responsibility is to route the data requests received into the appropriate database
API with the help of a predefined API catalog.

● A static file directory that includes any kind of file that is not meant to be stored as a
whole into a database (they can be indexed though using records in a DB). Such file
examples are the 3D models extracted from the 3D reconstruction task and the
multimedia downloaded by the crawling and scraping component. This directory
along with the Core Data Storage module must be placed in a dedicated server as
their access must be centralized for all the project modules.

● The database set, which can be composed of different database technologies storing
different types of objects (e.g. Knowledge Base containing RDF triplets, and an SQL
database for storing related metadata). Each database can exist in a different
machine.

● Database APIs which expose storing and retrieval functionalities, without the need of
providing direct access to the databases. They may also exist in different machines as
they only communicate with the Data Storage module. These database APIs will
encapsulate the read/write logic, according to the underlying data storage
technology.

D6.2 – V1.0

Page 33

Figure 6: Data storage and retrieval system

The Data Storage module will support the following abstract web methods (the specifics of
these methods will be defined according to the storage requirements each component will
have):

● save: Store a new data object into a database.

● get: Retrieve a data object from one database.

● update: Modify a data object already existing in a database.

● download: Given a URL as input, download the target file in the server’s file system.

● file: Retrieve a file existing in the server’s file system.

While calling one of the first three methods, a required parameter is the entity type of the
resource to be saved/updated/retrieved. This type will then be mapped into the APIs catalog
of the Data Storage module and the request will be redirected to its respective database.
Any additional parameters that refer to specific data managing functionalities (e.g. sorting of
the retrieved data) must be given using a predefined schema, according to the data that
need to be read/written.

The “download” function needs as input only the URL to be downloaded and the directory
on which the file will be stored. Last, the latter of the aforementioned parameters is the only
one required for the “file” function.

In the proposed architecture, there is no need to directly link the Data Storage and Retrieval
System with the Message Bus. Apart from particular exceptions, data shall not be circulated
into Message Bus and that is why they can be handled separately. When a module performs
a data storage (or update) action, it is responsible to update the Message Bus giving a brief
description of the action and how the resource can be retrieved by other modules (for
example by providing its identifier).

D6.2 – V1.0

Page 34

To better explain how the modules operate using the Data Storage and Retrieval System an
example of how two modules of the V4Design system, Crawling/Scraping and Aesthetics
extraction, communicate is illustrated in Figure 7. The exact steps of the whole process are
numbered accordingly.

Figure 7: Example communication between modules

The data storage and retrieval component will implement the functionalities required by the
following URs.

TR NB Description Function Function performed Related URs

TR_DS_1 Data Storing Data push
Sending and storing of resource(s)
to a target database.

UR_1, UR_59, UR_62

TR_DS_2 Data retrieval Data pull
Retrieval of resource(s) from a
target database.

UR_2, UR_3, UR_4, UR_35,
UR_37, UR_51, UR_69,
UR_70

D6.2 – V1.0

Page 35

5 ELEMENTARY REQUIREMENTS AND SPECIFICATIONS OF THE
V4DESIGN COMPONENTS

In the following chapter we define the technical requirements and technical specifications
for each service and system component that ought to be integrated in the V4Design
platform. These requirements have been extracted from the component definition survey
and the requirements definition questionnaire, which were circulated and filled by the
developments teams. They would serve as guidelines for the development, deployment, and
evaluation of these components and services.

In discussing these requirements and specifications, we discern between the platform
services, its middleware components, and the user tools that it supports, since each type
vary in the manner by which requirements are described, considered relevant, and used to
support the development activities. For instance, interfacing with the platform’s message
bus is a primary concern for the V4Design services, but is irrelevant for the user tools. On the
other hand, user tools have a diversified set of functions to perform in order to support a
rich user experience, while each service tend to be cantered on supporting a limited number
of function.

Therefore, we first discuss the technical requirements and specifications related to the
V4Design services, then we discuss the middleware components, and finally we address the
user tools.

5.1 Technical requirements and specifications of V4Design services

According to the V4Design concept and architecture design, eight different services are
planned to be developed and integrated to provide support for the specialized processes
encapsulated in the platform. Together, these services are responsible for ingesting raw data
and transforming it into the data objects required by the user.

In the following, we discuss the technical requirements and specifications of each of these
services separately, addressing the technologies and components involved in its
development and required for its deployment and proper functioning. We describe its
functions and inner logical components, and relate them to the elementary user
requirements defined in section 2 and in Appendix D of this document. In addition, we
discuss the manner by which the service manages data, as well as its non-functional
requirements such as security, scalability, reliability and capacity. Finally, we also describe
how it will interface with other services through the platform’s message bus.

5.1.1 Language Analysis - UPF

The Language Analysis module addresses the analysis and capture of the natural language
textual material into structured, ontological representations, so that appropriate system
responses can subsequently be inferred by the reasoning module (CERTH), and that textual
summaries can be produced (TALN-Language Generation). The module combines
multilingual dependency parsers and lexical resources, and a projection of the extracted
dependency-based linguistic representations into ontological ones.

Development environment

D6.2 – V1.0

Page 36

Java, C++, Python, Graph-transduction grammars

Minimum hardware requirements

Operating System: Linux
CPU: unspecified
RAM: 10GB
Disk Space: 10GB

Server software requirements

Linux system with Docker (>=18.x), preferably with Swarm or Kubernetes for multi-container
deployment. Software developed in Java (>=8.x), based on UIMA.

Global functions

Function Description Data input Data output Components

Language
Analysis

Full text analysis pipeline Raw text Language-independent
abstract structures,
syntactic and semantic
annotations on top of the
sentences (JSON)

Linguistic Analysis,
Concept extraction,
Relation Extraction

Functional/technical components

Component name Data input Data output Function(s) performed

Linguistic Analysis Raw text Annotated text Tokenization, Part-of-speech
tagging, Lemmatization, Surface-
syntactic parsing

Concept extraction Annotated text Annotated text Word Sense Disambiguation,
Entity linking

Relation Extraction Annotated text Language-independent
abstract structures

Deep-syntactic parsing,
Conceptual relation extraction

Figure 8: Logical design of Language Analysis

D6.2 – V1.0

Page 37

Related technical requirements

TR NB Description Function Function performed Related URs

TR_LA_1

Extract knowledge from textual
data to be able to map it to the KB

Linguistic
Analysis

Tokenization, Part-of-speech
tagging, Lemmatization, Surface-
syntactic parsing

UR_10, UR_11, UR_12,
UR_13, UR_14, UR_15,
UR_16, UR_17, UR_18,
UR_19, UR_20, UR_21,
UR_23, UR_35, UR_56,
UR_57, UR_64

TR_LA_2 Concept
extraction

Word Sense Disambiguation, Entity
linking

TR_LA_3 Relation
Extraction

Deep-syntactic parsing, Conceptual
relation extraction

Data output

Data object name: Language analysis results
Service function : Language analysis
Data schema: not yet fully defined, JSON structure

Messages Encoder language

Java

Messages sent

Message name Function Receiver(s) Related data objects

"Text analysed" Language Analysis KB population,
Summarization

Text Analysis results

Messages received

Message name Function Sender Related data objects

"New content available" Language Analysis Data storage Input text

Queuing solution

Not foreseen, relying on AMQ for queueing

Expected processing capacity

~ 5 to 10 requests/minute per scaleout node

Expected Availability and reliability

100%

Security policy

Relies on the authentication mechanism of the message bus, no additional security policy is

D6.2 – V1.0

Page 38

implemented.

Scalability policy

Supports both horizontal and vertical scaling

Local storage solution

The Language Analysis component does not use any local storage.

5.1.2 Language Generation - UPF

The language generation module is in charge of generating textual reports, descriptions, or
summaries, starting from data extracted from text, webpages, and/or visual analytics. It
starts from abstract representations, modelled, e.g., as RDF triples, which are stored in a
semantic repository. LG follows a request for a summary of most relevant contents related
to a specific keyword (or entity), or comes along a generated 3D model.

Development environment

Java, C++, Python, Graph-transduction grammars

Minimum hardware requirements

Operating System: Linux
CPU: unspecified
RAM: 10GB
Disk Space: 10GB

Server software requirements

Linux system with Docker (>=18.x), preferably with Swarm or Kubernetes for multi-container
deployment. Software developed in Java (>=8.x), based on UIMA.

Global functions

Function Description Data input Data output Components

Language
Generation

Generate textual reports,
descriptions, or summaries

Output from Text Analysis,
Knowledge Base

Text Text Planning,
Linguistic Generation

Functional/technical components

Component name Data input Data output Function(s) performed

Text Planning Output from Text Analysis
or Knowledge Base

Ordered sequence of
linguistic predicate
argument

identify contents related to the
queried entity, assesses their
relevance relative to this entity

D6.2 – V1.0

Page 39

Linguistic Generation Ordered sequence of
linguistic predicate
argument

Text Generates text in target language

Figure 9: Logical design of Language Generation

Related technical requirements

TR NB Description Function Function performed Related URs

TR_LG_1
Select content to be
generated as texts and
shown to the users.

Text Planning
identify contents related to the
queried entity, assesses their
relevance relative to this entity

UR_21, UR_23, UR_57,
UR_64

TR_LG_2
Render the selected content
as text.

Linguistic
Generation

Generates text in target
language

UR_10, UR_11, UR_12,
UR_13, UR_14, UR_15,
UR_16, UR_17, UR_18,
UR_19, UR_20, UR_21,
UR_23, UR_57, UR_64

Data output

Data object name: Language generation results
Service function: Language generation
Data schema: not yet fully defined, plain text or JSON structure

Messages Encoder language

Java

Messages sent

Message name Function Receiver(s) Related data objects

"Report generated" Language generation Broadcast Textual report

Messages received

D6.2 – V1.0

Page 40

Message name Function Sender Related data objects

"Report requested" Language generation TBD Pointer to information in KB

Queuing solution

Not foreseen, relying on AMQ for queueing

Expected processing capacity

~ 5 to 10 requests/minute per scaleout node

Expected Availability and reliability

100%

Security policy

Relies on the authentication mechanism of the message bus, no additional security policy is
implemented.

Scalability policy

Supports both horizontal and vertical scaling

Local storage solution

The Language Generation component does not use any local storage.

5.1.3 V4Design Crawler - CERTH

Desktop app that includes all the crawling and scraping functionalities envisioned in the
project, and defined under T2.1 in the project document. It encapsulates web crawling tools
designed to extract freely available textual and visual content from open web resources,
including from social media.

Development environment

Java

Minimum hardware requirements

Operating System: Windows
CPU:
RAM: 8GB
Disk Space: >20GB

Server software requirements

Java 8

D6.2 – V1.0

Page 41

MongoDB >=3.4

Global functions

Function Description Data input Data output Components

Crawling &
scraping
pipeline

Executes the service
procedure. Intended to be
run offline.

Web entry points or
queries.

Content from web
resources saved into
a database.

All Components.

Functional/technical components

Component name Data input Data output Function(s) performed

Web crawling Web entry points Discovered nodes Discovers nodes to scrap

Query expansion Queries in the form of
keywords

Extended version of the
input queries

Discovery of extra keywords
relevant to the input query

Web search Queries in the form of
keywords

Discovered nodes (and
possibly their content)

Depending on the available APIs,
scraping may also be performed

Web scraping Web resource URLs Web pages content
(textual and visual)

Extracts content from web pages

Social media crawling &
scraping

Queries (e.g. hashtags, user
accounts)

Social media posts Extracts content from social
media

Resource filtering Resources (web & social
media) along with their
scraped content

A subset of the input that
is determined as suitable
for out informational
needs

Application of classifiers that
categorize the resources as
appropriate or not for our
purposes

Figure 10: Logical design of a V4Design Crawler

Related technical requirements

TR NB Description Function Function performed Related URs

D6.2 – V1.0

Page 42

TR_CR_1
Using a set of URLs as web entry
points, collect all the hyperlinked URLs,
up to a predefined depth.

Web crawling Discovers nodes to scrape

UR_10, UR_11, UR_16,
UR_21, UR_22, UR_55,
UR_56

TR_CR_2
Add more keywords to refine the
search operations.

Query expansion
Discovery of extra
keywords relevant to the
input query

TR_CR_3
With the help of API, search a web
application (e.g. Flickr) using textual
queries.

Web search
Depending on the available
APIs, scraping may also be
performed

TR_CR_4 Extracting content from web pages Web scraping
Extracts content from web
pages

TR_CR_5
Search and collect social media posts
relevant to a keyword or a user
account.

Social media
crawling &
scraping

Extracts content from
social media

UR_10, UR_16, UR_21,
UR_24, UR_55

TR_CR_6

looks at the FTP server folders of a
content provider to see if any new
content has been added, and if so
extracts it to add to data storage

FTP crawling
extracts content from the
V4Design FTP server

TR_CR_7

based on an EDM file or a generic JSON
file, check if this JSON is SIMMO-
compliant. If not, use predefined maps
to make this JSON file SIMMO
compliant. Send to data storage

data model
mapping

maps incoming data from
the incoming data model
to SIMMO JSON

TR_CR_8

Application of classifiers that
categorize the resources as
appropriate or not for our purposes

Resource filtering categorizing the resources
as appropriate or not for
our purposes

Data output

Arbitrary data objects are generated that include exactly the fields needed to store for the
initial infrastructure. The fields we store for each entity are listed below:

- Webpage: URL, raw content (in html), metadata, textual content (plain text)
- Image: original URL, thumbnail URL, source webpage URL, caption, title, tags
- Twitter: raw text of the post

In order to have a unified data model for any type of multimedia, we plan to use the SIMMO
model https://github.com/MKLab-ITI/simmo defined in D6.1. Any adaptations or
enhancements required for the purposes of this project will be performed.

Messages Encoder language

Java + ApacheMQ JMS API

Messages sent

Message name Function Receiver(s) Related data objects

Web_resources_updated Crawling & scraping pipeline WP3 and WP4 modules Most probably SIMMOs

https://github.com/MKLab-ITI/simmo

D6.2 – V1.0

Page 43

Messages received

Crawling & scraping comprises the starting point for a processing pipeline, so no messages
are going to be received.

Queuing solution

Not foreseen, and not relevant if the Crawler does not receive messages

Expected processing capacity

Difficult to predict due to dependence on external factors, will be calculated empirically

Expected Availability and reliability

100%

Security policy

Relies on the authentication mechanism of the message bus, no additional security policy is
implemented.

Scalability policy

Supports both horizontal and vertical scaling.

Local storage solution

Database: MongoDB Version: >=3.4

Data schema

Figure 11: Data schema (SIMMO-based) of V4Design Crawler

D6.2 – V1.0

Page 44

5.1.4 Aesthetics Extraction and Texture Proposals (AE&TP) - CERTH

The Aesthetic Extraction (AE) and Texture Proposals (TP) service aims to extract and
categorize the aesthetics of paintings and images that contain architecture objects and
buildings based on their style (i.e. impressionism, cubism and expressionism), creator and
emotion that they evoke to the viewer and combine them so as to produce/suggest novel
textures.

Initially, an offline process will run so as to build the initial AE models. For that purposes, AE
components will need to gather a great deal of annotated images that consist of renowned
paintings, buildings and architecture objects. These data will be crawled from the web
and/or compiling data from the content providers APIs and when enough images are
compiled (>10K batch size), the AE component will be notified by the message bus, retrieve
these data and build/update the aesthetics models. These models will be stored in V4Design
server’s file storage and will be used to define the aesthetics category of a building, object
and painting that will be acquired during the online process. Furthermore, the top 50 results
of each category will be depicted to the V4Design user through the V4Design interface. The
user will be able to select the desired painting style that he would like to transfer to his
creation (3D model) and alter its texture using the TP component, which will perform this
process.

Development environment

Python, Tensorflow, Keras

Minimum hardware requirements

Operating System: Windows
CPU: N/A
GPU RAM: 2-3 GB
RAM: N/A
Disk Space: 30 GB

Server software requirements

Tensorflow -gpu 1.1.0,Python 3.5, OpenCV 3.3.1, keras-gpu 2.1.6, pandas 0.23.0, matplotlib
2.2.2, anaconda 1.6.14, h5py 2.8.0, numpy 1.12.1, pillow 5.1.0, scikit-learn 0.19.1

Global functions

Function Description Data input Data output Components

AE&TP Extracts the aesthetics from a set of
images (paintings, buildings,
objects), builds appropriate
aesthetics models, and use them to
define the aesthetics type of a new
image and to perform style transfer
and texture proposal.

- A batch of images so as
to create the aesthetics
models (offline)

- An image that contains a
building, object or
painting to define its type
(online)

- Aesthetics models,

- Aesthetics type

- Texture proposals

AE, TP

Functional/technical components

D6.2 – V1.0

Page 45

Component name Data input Data output Function(s) performed

Aesthetics extraction
(AE)

- Annotated images with style
and creator to build the
appropriate model for the
buildings, objects and
paintings classes

- Single image that contain a
building, object or painting so
as to define its aesthetics
category

- Aesthetics models based
on style and creator and
top-50 images for each
category

- Annotated image with the
appropriate aesthetic label

Aesthetics extraction from
paintings, clustering, model
extraction and storing on a local
file storage

Texture proposals (TP) Aesthetics model or source
image with the desired style
and goal image/model

Texture proposal with the
opted style

Transfer painting style from the
desired image or aesthetic model
and pass it to the goal image

Figure 12: Logical design of Aesthetics Extraction and Texture Proposals

Related technical requirements

TR NB Description Function Function performed Related URs

TR_AE_1

extract texture and style for images
and videos so as to be able to

retrieve patterns, textures and styles

Aesthetics
extraction
(AE)

Aesthetics extraction from paintings,
clustering, model extraction and
storing on a local file storage

UR_3, UR_4,
UR_41

TR_TP_1

combine textures and styles to
propose them in the generation of a

new image

Texture
proposals (TP)

Transfer painting style from the
desired image or aesthetic model
and pass it to the goal image

UR_3, UR_4,
UR_25, UR_27,
UR_41, UR_42

Data output

D6.2 – V1.0

Page 46

Data object name: aesthetics_model
Storage format: h5
Data schema:

- Field name: style
- Type: DCNN-model (.h5)
- Allowed values: {Baroque, Impressionism, Expressionism, Cubism, Rococo,

Minimalism, Abstract Expressionism, Action painting, Analytical Cubism, Art Nouveau,
Colour Field Painting, Contemporary Realism, Early Renaissance, Fauvism, High
Renaissance, Mannerism Late Renaissance, Naive Art Primitivism, New Realism,
Northern Renaissance, Pointillism, Pop Art, Post Impressionism, Realism,
Romanticism, Symbolism, Synthetic Cubism, Ukiyo-e}

- Field name: creator
- Type: DCNN-model (.h5)
- Allowed values: { Salvador Dali, Vincent Van Gogh, Pablo Picasso,Albrecht Durer, Boris

Kustodiev, Camille Pissarro, Childe Hassam, Claude Monet, Edgar Degas, Eugene
Boudin, Gustave Dore, Ilya Repin, Ivan Aivazovsky, Ivan Shishkin, John Singer Sargent,
Marc Chagall, Martiros Saryan, Nicholas Roerich, Pierre Auguste Renoir, Pyotr
Konchalovsky, Raphael Kirchner, Rembrandt,Paul Cezanne,}

- Field name: type
- Type: string
- Allowed values: {painting, building, object}

Data object name: texture_proposal
Storage format: JPEG/ PNG
Data schema:

- Field name: texture
- Type: image
- Allowed values: 8bit image

Messages Encoder language

Java (possibly the same with crawler service)

Messages sent

Message name Function Receiver(s) Related data objects

New_Aesth_model AE&TP TP service, Semantics
service,

aesthetics_model

Update_KB AE&TB Semantics service Input_image

New_texture_proposal AE&TP Semantics service texture_proposal

Messages received

D6.2 – V1.0

Page 47

Message name Function Sender Related data objects

New_img Notifies AE module that a new image exist in
the File Storage

Message_bus Input_image

Queuing solution

Planned for M10

Expected processing capacity

1 request at a time

Expected Availability and reliability

Processes 1 request at a time, unavailable when processing

Security policy

Relies on the authentication mechanism of the message bus, no additional security policy is
implemented.

Scalability policy

The number of requests and the processing time are linearly dependent

Local storage solution

File system storage.
Data object name: paintings
Storage format: {JPEG, PNG}
Estimated disk space: ~1G for each aesthetic model, ~0.5G for the style transfer model,
~30G for saving the images and their annotations that will be used to create the aesthetics
model.

5.1.5 KB Population - CERTH

The KB population service is responsible for mapping the incoming information from the
different V4Design modules to the RDF-based representation format, based on the
ontologies that will be developed to provide the annotation models. This involves the
development of vocabularies for capturing texture and aesthetics, semantic relations (e.g.
named entities, concepts and relations) extracted from textual analysis, along with various
properties, such as artists, year etc., buildings, interior objects and other content-specific
attributes (e.g. landscapes, architectural styles, etc.). The underlying knowledge structures
will also provide all the necessary semantics needed to generate textual descriptions and
summaries for each asset. The service will support different mapping services, according to
the format of the input that we will get from the other components, e.g. XML, JSON, etc. The
service will be also responsible for updating the KB with information coming from structured
repositories, such as the Europeana API.

D6.2 – V1.0

Page 48

Development environment

Java

Minimum hardware requirements

Operating System: Windows 10
CPU: Intel® Xeon® Silver 4108
RAM: >5GB
Disk Space: >50GB

Server software requirements

Apache Tomcat
Java 8
GraphDB

Global functions

Function Description Data input Data output Components

setData remote method to upload
data to the KB

analysis results from
various modules

updated KB (RDF triples
that correspond to the
incoming data)

KBPopulation

Functional/technical components

Component name Data input Data output Function(s) performed

KBPopulation analysis results from various
modules

updated KB (RDF triples
that correspond to the
incoming data)

mapping to RDF

Figure 13: Logical design of KB Population

Related technical requirements

There are no requirements directly involving KBPopulation. The service is potentially
relevant to all requirements, since it stores metadata generated by other services.

D6.2 – V1.0

Page 49

TR NB Description Function
Function
performed

Related URs

TR_KB_1 Map analysis results from other modules

KBPopulation
RDF mapping and KB
population

UR_2

TR_KB_2
Provide an API over the KB for querying
metadata

TR_KB_3 Map metadata about texture resolution UR_3

TR_KB_4
Map analysis results from building
localisation

UR_10, UR_20, UR_57

TR_KB_5 Map analysis results from object localisation

TR_KB_6 Map analysis results from aesthetics

TR_KB_7 Map analysis results from text analysis

TR_KB_8 Map analysis results from reasoning

TR_KB_9 Map metadata about quality UR_12, UR_37

TR_KB_10 Map geo-location of assets

UR_15

TR_KB_11 Map date (creation date)

TR_KB_12 Map author info

UR_16

TR_KB_13 Map copyright info

TR_KB_14 Map visible colours UR_18

TR_KB_15
Map metadata coming from 3D model
reconstruction

UR_20

TR_KB_16 Map results from text generation UR_21

TR_KB_17
Ability to associate assets with relevant
external Web Pages

UR_22

TR_KB_18 Map results from text generation UR_23

TR_KB_19 Associate assets with preview thumbnails UR_30

TR_KB_20 Ability to map texture mayerial metadata UR_41

TR_KB_21
Support the linking of assets with relevant
ones

UR_50

D6.2 – V1.0

Page 50

TR_KB_22
Support the annotation of assets with reuse
rights and copyrights

UR_55

TR_KB_23 Map analysis results from text generation UR_57

Data output

The component generated RDF triples, following the V4Design ontologies that will be
developed. An initial model can be found here

Messages Encoder language

JAVA + RDF4J (rdf4j.org/), Gson (https://github.com/google/gson) and perhaps an XML parser

Messages sent

Message name Function Receiver(s) Related data objects

DataUploaded setData ReasoningService the relevant triples (?)

Messages received

Message name Function Sender Related data objects

DataAvailable setData some component which
has results to provide

it depends on the component

Queuing solution

Not currently contemplated, but could be necessary in a later stage

Expected processing capacity

At the beginning, the service will not support concurrency, e.g. any request to map data will
be processed only when the previous one is finished. If needed, concurrency can be
supported.

Expected Availability and reliability

100%

Security policy

Basic local authentication (username/password) can be supported

Scalability policy

Not sure yet.

Local storage solution

https://www.dropbox.com/s/baogl8tnkqhzdtz/v4d_model.ttl?dl=0
https://github.com/google/gson

D6.2 – V1.0

Page 51

Native RDF triple store, GraphDB V8

5.1.6 Semantic Integration and Reasoning - CERTH

The reasoning service will be responsible for further analysing the knowledge captured in
the Knowledge Base. More precisely, the module will try to build a unified representation of
the available assets, taking into account information relevant to texture and aesthetics,
named entities, concepts and relations extracted from textual analysis, as well as buildings,
interior objects and other content-specific attributes. To this end, this module will develop
the context-aware reasoning and information coupling algorithms operating on-top of the
available ontological knowledge built by the KB Population module, supporting the decision-
support aspects of the V4Design platform, according to the use case requirements that will
be defined. All in all, the reasoning process aims to derive facts and higher-level implicit
knowledge from information already generated by the aforementioned V4Design modules,
and asserted in the ontologies, preparing the information to be presented to the user. The
component will be also responsible for query formulation, i.e. the translation of interface
requests into one or more queries to the backend data storage infrastructure in order to
retrieve and send back results.

Development environment

Java

Minimum hardware requirements

Operating System: Windows 10
CPU: Intel® Xeon® Silver 4108
RAM: >5GB
Disk Space: >50GB

Server software requirements

Java 8

Global functions

Function Description Data input Data output Components

startReasoning remote method to start
the reasoning task

- updated KB with new
knowledge (RDF triples)

ReasoningService

startSearch remote method to be
called in order to retrieve
results from the data
storage

filtering data from
the interface

query results in the form
of RDF model

ReasoningService

Functional/technical components

D6.2 – V1.0

Page 52

Component name Data input Data output Function(s) performed

ReasoningService - updated KB with new
knowledge (RDF triples)

derives implicit relations

ReasoningService filters query results in the form of
RDF model

query formulation / enrichment

Figure 14: Logical design of Reasoning

Related technical requirements

TR NB Description Function Function performed Related URs

TR_RQ_1

Support searching functionality
(translation of user requests into one
or more queries over the data
storage

Reasoning
Service

query formulation / enrichment UR_2, UR_50

TR_RQ_2 Infer geolocation from location tag
Inference of implicit relations and
context

UR_15

TR_RQ_3
Propagate annotations from other
modalities to the 3D models

Inference of implicit relations and
context

UR_20

TR_RQ_4
Find relevant external Web page,
based on the annotation provided by
other components

Inference of implicit relations and
context

UR_22

TR_RQ_5
couple searching functionality with
text analysis on the keywords

query formulation / enrichment UR_35

TR_RQ_6 Find assets relevant to other assets
Inference of implicit relations and
context

UR_50

Data output

The component generates RDF triples, following the V4Design ontologies that will be
developed. An initial model can be found here.

https://www.dropbox.com/s/baogl8tnkqhzdtz/v4d_model.ttl?dl=0

D6.2 – V1.0

Page 53

Messages Encoder language

JAVA and SPIN rules (http://spinrdf.org/)

Messages sent

Message name Function Receiver(s) Related data objects

ReasoningFinished startReasoning TBD -

SearchFinished startSearch GUI TBD

Messages received

Message name Function Sender Related data objects

DataUploaded startReasoning KBPopulation -

SearchRequestAvailable startSearch GUI TBD

Queuing solution

Not sure yet

Expected processing capacity

At the beginning, the service will not support concurrency. If needed, concurrency can be
supported

Expected Availability and reliability

100%

Security policy

Basic local authentication (username/password) can be supported

Scalability policy

Not sure yet

Local storage solution

Native RDF triple store, GraphDB V8

5.1.7 Spatio-Temporal Building and Object Localization (STBOL) - CERTH

Spatio-Temporal building and object localization in images and video frames service initially

aims to define their type, i.e. whether the image or video contains a building, object or a

painting and then semantically segment it in a spatio-temporally manner in order to localize

http://spinrdf.org/

D6.2 – V1.0

Page 54

the spatial elements of the buildings (i.e. type of window, door, roof, decoration, facade,

etc.) and the surrounding area. The end-user will give to the system images or videos and it

will get masks of video frames with tagged regions that include buildings, basic structural

elements and building surroundings, which will then be given to the 3D-reconstruction

module so as to incorporate the extracted tags to its 3D models.

Development environment

Python, Tensorflow, Keras

Minimum hardware requirements

Operating System: Linux OS
CPU: N/A
GPU RAM: 2-3GB RAM: N/A
Disk Space: 30GB

Server software requirements

Tensorflow -gpu 1.1.0,Python 3.5, OpenCV 3.3.1, keras-gpu 2.1.6, pandas 0.23.0, matplotlib
2.2.2, anaconda 1.6.14, h5py 2.8.0, numpy 1.12.1, pillow 5.1.0, scikit-learn 0.19.1

Global functions

Function Description Data input Data output Components

STBOL Defines whether a video or
image contains a building,
object or painting and
segment them in a spatio-
temporal manner

Video or image
that contain
buildings, object
or painting

- Define the type of the
given data (building,
object, painting, other)

BOL, STBOL

Functional/technical components

Component name Data input Data output Function(s) performed

BOL -Video

- Image

Tagged image/video with
the detected type of
interest

Scene recognition on the image or video
frame:

- Define whether a video contains data of
interest (i.e. building, object) and define its
location in the video

- Define whether an image contains a
building, object, painting

STBOL - Video
- Image

Binary masks that define
regions of interest on the
given data

Semantic segmentation on the provided
image/ video:

- Segments the video in a spatio-temporal
manner so as to extract masks of interest

- Segments the image in a spatial manner
to extract the masks of interest

D6.2 – V1.0

Page 55

Figure 15: Logical design of Object Localization

Related technical requirements

TR NB Description Function Function performed
Related

URs

TR_OL_1
provide locations of buildings and
objects in an image or a video

BOL

Scene recognition on the image or video
frame:

- Define whether a video contains data of
interest (i.e. building, object) and define
its location in the video

- Define whether an image contains a
building, object, painting

UR_63

TR_OL_2
provide binary masks of the
buildings and objects which are
detected

STBOL

Semantic segmentation on the provided
image/ video:

- Segments the video in a spatio-
temporal manner so as to extract masks
of interest

- Segments the image in a spatial manner
to extract the masks of interest

UR_25, UR_63

Data output

Data object name: stBOL_model

Storage format: h5

Data schema:

{alley;amphitheater;apartment_building;aqueduct;arcade;arch;archaelogical_excavation;arch

D6.2 – V1.0

Page 56

ive;auditorium;balcony;barn;barndoor;bazaar;beach_house;boathouse;bridge;building_facad
e;bus_station;campus;castle;catacomb;cemetery;church;construction_site;corridor;dam;dep
artment_store;downtown;gas_station;general_store;gift_shop;harbor;hospital;hotel;house;i
ndustrial_area;inn;lighthouse;mansion;manufactured_home;mosque;motel;museum;natural
_history_museum;oast_house;palace;parking_lot;pavilion;playground;restaurant;schoolhous
e;stadium;supermarket;temple;tower;train_station;tree_house;wind_farm;windmill;yard}

Field name: object

Type: DCNN-model (.h5)

Allowed values: {sofa; table; chair; lamp; mug; etc.}

Field name: type

Type: string

Allowed values: {object, building}

Data object name: building_object_mask

Storage format: JPEG/ PNG

Data schema:

Field name: mask

Type: image

Allowed values: 8bit image

Messages Encoder language

Java (probably)

Messages sent

Message name Function Receiver(s) Related data objects

New_Image_Type BOL Semantics service BOL_model

New_Video_type BOL Semantics service BOL_model

New_Image_Mask STBOL 3D-reconstruction,
Semantics service,

stBOL_model

New_Video_Mask STBOL 3D-reconstruction,
Semantics service

stBOL_model

D6.2 – V1.0

Page 57

Messages received

Message name Function Sender Related data objects

New_image Notifies STBOL service that
there is a new image to be
processed

Message_bus Input image

New_video Notigies STBOL service that
there is a new video to be
processed

Message_bus Input video

Queuing solution

Planned for M12

Expected processing capacity

1 (Depends on the number of GPUs that are going to be available)

Expected Availability and reliability

Processes 1 request at a time, unavailable when processing

Security policy

No local security policy will be supported

Scalability policy

The number of requests and the processing time are linearly dependent.

Local storage solution

File system storage.

Data object name: buildings, objects

Storage format: {JPEG, PNG}

Estimated disk space: ~1G for each scene recognition model, semantic segmentation model,

~30G for saving the images and their annotations that will be used to create the
aforementioned models.

5.1.8 3D Reconstruction - KUL

The reconstruction service will be responsible for conversion of input video and image data
into 3D point clouds and meshes. Input data will be initially analysed to determine
reconstruction suitability. The service will distinguish data suitable for multi multiple-view
reconstruction (preferred method) and data suitable for single view reconstruction. The

D6.2 – V1.0

Page 58

multiple-view reconstruction (MVR) pipeline will be providing intermediate results. Multiple
output formats will be available for extracted 3D models.

Development environment

Windows 10, Visual studio 2017, C++ , C#

Minimum hardware requirements

Operating System: Windows 10
CPU: Server-grade for high computation (Intel Xeon, AMD epyc)
GPU: High-end Nvidia graphics card (>=GTX 1080)
RAM: >32GB
Disk Space: >1TB

Server software requirements

.net core, framework redistribution (latest version)
Microsoft visual C redistribution (2017)

Global functions

Function Description Data input Data output Components

Analyze Initiate analysis on data
wrt reconstruction
capabilities. yes/no
output.

Video, images, visual
analysis input

Internal format to
determine
multi/single view
reconstruction.

Reconstruction
AnalysisService

InitializeReco
nstruction

@ succesfull analysis a
reconstruction may be
initialized.

Reference to Analyze output
(layout details tbd)

handle/reference to a
reconstruction object

MultiView
Reconstuction

ProcessRecon
struction

Any processing can be
requested for a
reconstruction,
depending on data input

- Reconstruction ref/handle

- Flags / type of processing
to be requested. Could

- (optional) settings: for
further tinkering of the
process if so desired

 MultiView
Reconstuction

Functional/technical components

Component name Data input Data output Function(s) performed

ReconstructionAnalysisSe
rvice

Video, images, visual
analysis input

Internal format to
determine multi/single view
reconstruction

derives implicit relations

MultiViewReconstuctionS
ervice

Output of
ReconstructionAnalysisSer
vice

3D models, pointclouds Image matching, reconstruction,
format conversion

D6.2 – V1.0

Page 59

CommunicationService Local storage - Rest-api

Figure 16: Logical design of 3D Reconstruction

Related technical requirements

TR NB Description Function Function performed
Related
URs

TR_3D_1 Extract and build a 3D model Reconstruct
Build a 3D model from the collection
of images or video frames

UR-8, UR-2,
UR-7, UR-20,
UR-6, UR-16

Data output

3D model with metadata

Messages Encoder language

.net core/framework

Messages sent

Message name Function Receiver(s) Related data objects

ReconstructionStart Reconstruct TBD Raw input data

ReconstructionEnd Reconstruct TBD TBD

ReconstructionUpdate Reconstruct TBD New output data: models,
pointclouds, etc.

Messages received

Message name Function Sender Related data objects

D6.2 – V1.0

Page 60

VisualAnalysisDone ReconstructionAnalysis TBD TBD

Queuing solution

The service includes a queuing solution

Expected processing capacity

Susceptible towards request image/video size and needs further experimenting

Expected Availability and reliability

Once service reaches 100% computing capacity, new requests will be put on hold

Security policy

No local security policy will be supported

Scalability policy

Horizontal scaling possible if service is deployed on multiple machine

Local storage solution

File system

5.2 Technical requirements and specifications of V4Design middleware
components

The V4Design platform’s architecture design defines two middleware components, being the
V4Design REST API and the message bus.

5.2.1 The V4Design message bus - McNeel

The V4Design message bus is in charge of integrating the different components of the
V4Design platform, supporting real-time communication between them. It allows the
platform to adopt a distributed architecture model by which different components can be
hosted on different servers, developed under different frameworks, and serviced by
different teams. This loose integration model is key to the successful evolution of the
platform into a high-end operational service architecture. Therefore, the message bus is a
key component that is responsible to guarantee the proper execution of the platform
processes, beyond the responsibilities of its services.

Development environment

Java

Minimum hardware requirements

D6.2 – V1.0

Page 61

Operating System: Ubuntu Linux
CPU: single CPU >2Ghz
RAM: 1 GB
Disk Space: 0.5 GB

Server software requirements

Java Runtime Environment - JRE 1.7
Maven 3.0.0 build system
Apache ActiveMQ broker engine, V 5.15.0

Supported messaging protocols

AMQP, in addition to OpenWire, STOMP, MQTT, WSS

Supported message types

Message Type Description Message bus action

Broadcast a service broadcasts a message to inform other services of
changes in its status-quo, including the arrival of new
data, the completion of a process, and so on.

The message bus will relay broadcast
messages to all authenticated
components.

Service-to-Service a service places a request to another service, which could
include a query for data, a trigger for a function, and so
on.

The message will be relayed
exclusively to the destination service.

I’m alive the service informs the message bus that it is up and
running

The message bus will confirm
authentication.

I’m shutting down /
unavailable

the service informs the message bus that it is going
offline. The message bus will also periodically check the
services reachability automatically.

The message bus will NOT respond.

Figure 17: Logical design of Message Bus

D6.2 – V1.0

Page 62

Queuing solution

The message bus supports the creation of component-level and architecture-level queues.
Messages need not to be queued for processing by the message bus, this is done in real-time.

Expected processing capacity

Maximum performance between 1000 and 2000 messages/second.

Expected Availability and reliability

The message bus will always be available. A redundant instance is installed and placed on
standby, and will be automatically activated if the main instance fail.

Security policy

The message bus will support component authentication.

Scalability policy

Horizontal scaling is supported up to 20,000 messages per second.

Local storage solution

The message bus uses a local database to store message and other metadata for increased
performance, reliability, and traceability. For this purpose, we use Apache KahaDB as a file
based persistence database.

A complete description of this database properties is available at
http://activemq.apache.org/kahadb.html

5.2.2 The V4Design REST API - NURO

The V4Design REST API provides the functionality necessary for front-end applications to
query and retrieve assets from the V4Design Asset Repository. The RESTful API will provide
specific calls to query the Asset Repository through any number of metadata fields, such as
asset type (3D model or image), asset date, asset quality, and any other relevant fields that
would help to filter the available assets. Specifically, the V4Design REST API connects to the
database in charge of managing the Asset Repository objects without needing to go through
the V4Design Message Bus system.

This API will be utilized by both the V4Design front end user interface for Architects and
Video Game designers (Rhino3D and Unity plugins). Each of the application plugins will
present the user with an interface to enter in any query filters relevant to the assets
produced by the V4Design system. Once the filters have been entered, the application will
format an API call and transmit this to the API endpoint. The endpoint will respond with a list
of potentially relevant assets based on the query filters. The front end applications can then
be programmed to respond appropriately to the user by presenting the results, and
eventually making the results available for download.

http://activemq.apache.org/kahadb.html

D6.2 – V1.0

Page 63

Development environment

Linux, node.js, Swagger or Apiary

Minimum hardware requirements

Operating System: Linux
CPU: 4 Cores+
RAM: 8GB +
Disk Space: 100GB+

Server software requirements

Apache Webserver on a Linux based OS with MySQL database. PHP as fpm if possible (not
mod_php)

Supported call protocols

REST APIs

Supported call types

A complete list of calls supported by the API, alongside the specifications of each call are
included in Appendix E.

Related technical requirements

TR NB Description Function Function performed
Related
URs

TR_RA_1 Create a user profile Create user Helps user tools to create users UR_022

TR_RA_2
Create login credentials for a
user

User Login
Helps user tools to login to the
system and authenticate them

TR_RA_3 Create new asset Create Asset
Helps user tools to create asset
details

UR_1,
UR_59,
UR_62,
UR_014,
UR_008

TR_RA_4 Upload new asset Upload Asset Helps users to upload assets

TR_RA_5
Get latest asset (texture, 3D
model) from DB

Get Latest
assets

Gets the latest asets from the
database

UR_2, UR_3,
UR_4,
UR_35,
UR_37,
UR_51,
UR_69,
UR_70

TR_RA_6 Search V4Design DB for assets Search
Searches the database for assets
based on a specific field

UR_2, UR_3,
UR_4,
UR_35,
UR_37,

D6.2 – V1.0

Page 64

UR_51,
UR_69,
UR_70

TR_RA_7 Rate an asset Rating Rates an asset
UR_014,
UR_008

TR_RA_8 Comment an asset Comments Adds a comment to the asset

Queuing solution

No queuing solution is contemplated

Expected processing capacity

Depends on CPU

Expected Availability and reliability

 Depends on network connection. Best case 100%

Security policy

OAuth 2.0

Scalability policy

Not specified

Local storage solution

Database with MySQL

5.3 Technical requirements and specifications of V4Design user tools

According to the development plan of the V4Design platform, two user tools are planned to
be developed and integrated in the platform to interface with the user profiles defined in
the use cases and use scenarios. In the following, we discuss the technical requirements and
specifications of the tools.

5.3.1 V4Design for Rhino - McNeel

The V4Design for Rhino project is a plugin for the Rhinoceros 3D (Rhino) software platform
developed by Robert McNeel & Associates. Rhino is typically used by design professionals to
produce 3d models of objects, spaces, buildings, urban environments, etc. Rhino includes
accurate NURBS as part of its geometry kernel, and thus, the models produced are useful for
fabricating accurate physical representations of the 3d models. Due to this, Rhino is used by
architects to produce 3D models of their building designs.

The V4Design for Rhino plugin will present the Rhino user with a GUI capable of querying the
V4Design asset repository. The user will be able to search for V4Design assets by a host of

D6.2 – V1.0

Page 65

asset metadata such as asset location, asset type (3d model, image, etc.), and other relevant
metadata. Once the query has been entered, the results of the query will be presented to
the user through the V4Design for Rhino GUI. These results should include a graphical way to
review the results, including a thumbnail image of the asset, textual description of the asset,
and any other relevant data that can be useful to the user when selecting an asset from the
query results. The user will then be able to introduce this asset into the Rhino modelling
environment for further interrogation, manipulation, etc.

User profiles

Profile name: basic

Role description: a normal Rhino user. Such a user would be able to access the V4Design
assets from the plugin in Rhino. The user can query the asset repository and eventually
download (read) the asset to be included into the Rhino model. The user would be able to
create personal libraries of models from the V4Design asset repository, which are essentially
lists of V4Design asset URIs. These personal libraries are stored along with their user profile.

Permissions: Read (access V4Design assets), Evaluate assets (like a particular asset)

Restrictions: None for the moment, could change later.

User Authentication mechanism

There are two cases where the V4D4Rhino plugin might require user authentication:

 1- Tracking liked V4Design assets

 2- Tracking personal V4Design asset libraries

These cases should be evaluated in relation to the effort required to provide this
functionality. Alternatively, such data could be stored locally on the user’s machine. The
advantages of this are that there would then be no need for user authentication. The
disadvantage of this is that the user would only be able to access this personal information
from the machine on which they have used the V4D4Rhino plugin.

If it is decided that user authentication is necessary from the V4D4Rhino plugin, the plugin
could use the user’s associated “Rhino Account” which is how users can ‘log in’ to Rhino and
thus validate they are the owner of the Rhino license. Rhino Accounts is now available to use
for third party developers as a way to authenticate users. The system allows a user to link
either their Google or Facebook accounts.

Rhino Accounts also allows for two factor authentication.

Usage / Deployment environment

Works on top of Rhino, or as a Rhino based standalone application.

The V4D4Rhino plugin would be installed via the Rhino Installer Engine, which is a separate
executable installed along with Rhino 3d. This executable registers the .rhi extension on
Windows and the .macrhi extension on macOS. The installation package is merely a
compressed archive (.zip) with the contents of the compiled plugin and any resources needed
to support the plugin. The V4D4Rhino.rhi or .macrhi package can be installed by double

D6.2 – V1.0

Page 66

clicking on the file. This initiates the Rhino Installer Engine to evaluate the package. Once the
package has passed the evaluation stage, the contents are copied in the appropriate locations
on the user’s hard drive. The next time the user opens Rhino, the V4D4Rhino functionality
can be accessed. The V4D4Rhino plugin installer will be made available through Rhino’s
repository of plugins at https://food4rhino.com

More information on Rhino Plugin Installers: Windows | macOS

Alternatively, the V4D4Rhino plugin can be distributed on Yak, Rhino’s package manager. Yak
is accessed from within Rhino. Yak is an experimental project in Rhino 6, and will be a feature
of Rhino 7. Users can access the package manager with a command in Rhino that brings up a
window with the available packages. A user would see the V4D4Rhino package (or if they
already have it installed, they might see if there is an update), as well as options to install it.
Once installed from the package manager, the V4D4Rhino functionality will be available.

More information on the Rhino Package Manager:
https://developer.rhino3d.com/guides/yak/

Prerequisites in deployment environment

The V4D4Rhino requires Rhino 6 either running as an evaluation license (90 days) or as a
commercial or educational license.

The user will need to register for a Rhino Account.

Technical specifications of deployment environment

 Operating System: Windows 10, 8.1, or 7 SP1 or macOS 10.13.x
CPU: Intel i5, i7, etc.
RAM: 8 GB
Disk Space: 600 MB
Others:

● Internet connection for Rhino Accounts
● OpenGL 4.1 capable video card is recommended.

More information in technical requirements:
https://www.rhino3d.com/6/system_requirements

Not supported operating systems:

● Linux
● Windows 8
● Windows XP 64-bit
● Windows Vista, NT, 95, 98, ME, or 2000
● Windows 32-bit all versions
● Virtualization systems on OS X such as VMWare and Parallels
● OS X 10.10.4 (early versions of Yosemite) and any earlier versions

Usage limitations

The tool is made to work locally, one instance per user, so no scalability or multi-user support

https://food4rhino.com/
https://developer.rhino3d.com/guides/rhinocommon/plugin-installers-windows/
https://developer.rhino3d.com/guides/rhinocommon/plugin-installers-mac/
https://developer.rhino3d.com/guides/yak/
https://www.rhino3d.com/6/system_requirements

D6.2 – V1.0

Page 67

is required. This concern is more pertinent to the V4Design backend architecture.

Logical components

Component name Data input Data output Function(s) performed

Query Composer User parameters User Query FormatQuery

Connector User Query API Call callAPI

Listener Query Results Serialized Query Results readResults

Results Converter Serialized Query Results Rhino Model buildModel

modelVisor buildModel N/A User interaction

Figure 18: Logical design of V4Design for Rhino

D6.2 – V1.0

Page 68

Supported functionalities

Functionality Description Data Objects

Query Create query string to interrogate the
V4Design asset repository.

JSON formatted request to the
V4Design Rest API. Returns results
based on query as a JSON
formatted reply.

Discover View V4Design assets previewed
with a thumbnail and basic
description.

Evaluate Like an asset JSON formatted message to the
V4Design Rest API to record this
evaluation. JSON formatted result
stating that the evaluation has
been recorded.

Collect Create personal collections or
libraries of objects.

JSON formatted collection of asset
ids.

Include Include V4Design asset in Rhino
model

URI to the V4Design asset so that
Rhino can download it and include
it in the model.

Related elementary user requirements

UR NB HLUR NB Description

UR_30 HLUR_203
HLUR_207

As an Architect I want UIX: 3D-gallery i.e. A distraction free interface with rendered
preview thumbnails.[2]

UR_32 HLUR_203
HLUR_207
HLUR_208

As an Architect I want a UIX a detailed view of a Gallery of 3D model (with/without
texture) and usage examples from other users

UR_33 HLUR_203
HLUR_207
HLUR_208

As an Architect I want UIX a detailed view of Additional data: palette of visible
colours + bounding box size, author, copyright

UR_34 HLUR_203
HLUR_207
HLUR_208

As an Architect I want a UIX a detailed view of Team/Public relation functions:
Rating system, Personal notes/ marking/ save to favourites, share functionality for
social media.

UR_36 HLUR_203
HLUR_207

As an Architect I want UIX of Tags organized in tree structure and search field for
typing tag. Personal tags (non-public tags)

UR_37 HLUR_203
HLUR_207

As an Architect I want UIX: Detailed search by features: - Quality (3D model/
texture), Footage features, augmented data

D6.2 – V1.0

Page 69

UR_38 HLUR_203 As an Architect I want UIX: Download settings (saveable profiles): - Mesh
quality/format, Texture quality/ format/ layers (checkboxes), Material definition
file, Colour palette (e.g.: adobe swatches)

UR_46 HLUR_203
HLUR_207
HLUR_208

As an Architect I want Simple and clear visual UI (User Interface). Simple enough for
non-specialised users

UR_47 HLUR_203 As an Architect I want have access to the code of the tool

UR_69 HLUR_205
HLUR_207
HLUR_208

Batch Download/Load of assets. Have the ability to load multiple assets at once.

Related technical requirements

TR NB Description Function Function performed
Related
URs

TR_RN_1
Retrieve 3D models from V4D
Asset Repository

Combined
Query

Query and retrieve 3D models of
different resolutions from the
V4Design repository

UR_002

TR_RN_2
Retrieve textures from V4D
Asset Repository

Send boundbox and retrieve the
texture delimited by the box

UR_003

TR_RN_3 Retrieve asset metadata
The Query results have their
metadata integrated, or made
accessible (via URIs)

UR_006,
UR_007,
UR_039

TR_RN_4 Query V4D asset repository Query resources by any field
UR_012,
UR_013

TR_RN_5
Personal assets library, discover
new assets

Query mechanism encourages
discovery

UR_025

TR_RN_6
Save asset as different file
format

Save assets
Save assets locally in different
compatible formats

UR_014,
UR_008

TR_RN_7 View V4D 3D models in VR

Asset viewer

View 3D models in an interactive way
(rotate, zoom, etc.)

UR_010

TR_RN_8
Preview and markup of V4D
assets

Obtain low-resolution instances of
images, videos and 3D models

UR_011,
UR_009

TR_RN_9 Visualize retrieved V4D assets
View any V4D asset (image, video, 3D
model, etc.)

UR_020

TR_RN_10 Simple UI Intuitive and simple GUI design UR_022

TR_RN_11 Open source Tool Source code to be made available UR_023

API connector - development language

D6.2 – V1.0

Page 70

JavaScript

Development libraries used

Vue.js for UI.

Local Storage

Local storage of preferences, cached assets, etc. will occur on the local file system.

Data objects stored in Local Storage

Data object name: User Defined V4Design Asset Libraries
Storage format: JSON
Data schema:
For each field, please specify:

- Field name: V4Design asset URI array
- Type: string array
- Allowed values: string array with URI to V4Design Asset metadata collected in this

user defined library

- Field name: Collection name
- Type: string
- Allowed values: name of the user defined library

5.3.2 VR Authoring tool - NURO

The authoring tool for VR game development will be based on Unity Engine for game
development. Unity3D (www.unity3d.com) is a cross-platform game engine primarily used
for development of 2D and 3D games. Unity is the most used game engine and is available
for free to the community. Games on unity can be developed using C# and other design tools
included in the software. Games for 27 different platforms, such as iOS, Android, Windows,
PlayStation, Xbox as well as VR devices such as Oculus Rift, Google Cardboard, Steam VR,
PlayStation VR, Gear VR, windows Mixed Reality as well as Daydream can be developed
using Unity.

User profiles

Profile name: Basic
Role description: a normal unity user. To access V4Design, they will have to login using the
tool
Permissions: Dependent on the type of user. Generally it is read and download assets
Restrictions: None

User Authentication mechanism

The users will be tracked for downloading the V4Design assets, liking and reviewing the
assets. Also the authorisation of the user’s will be done using V4Design user roles defined on

http://www.unity3d.com/

D6.2 – V1.0

Page 71

the server.

Usage / Deployment environment

As a unity plug-in, the authoring tool will be packaged and any user can download and install
the package on their system’s unity3d software. The packages will be in DLL format.

Prerequisites in deployment environment

The main prerequisite for the deployment environment is Unity3D, and other prerequisites
specified by Unity, namely:
WebGL: Any recent desktop version of Firefox, Chrome, Edge or Safari.
Universal Windows Platform: Windows 10 and a graphics card with DX10 (shader model 4.0)
capabilities

Technical specifications of deployment environment

Operating System: Windows 7 SP1+, macOS 10.11+, Ubuntu 12.04+, SteamOS+
CPU: Intel i5, i7, etc. + SSE2 instruction set support.
RAM: 8 GB
Disk Space: 1+ GB
Others: Graphics card with DX10 (shader model 4.0) capabilities. For instance NVIDIA
Graphics card (minimum 2 GB memory)

Usage limitations

The tool is made to work locally, one instance per user, so no scalability or multi-user support
is required. This concern is more pertinent to the V4Design backend architecture.

Supported functionalities

Functionality Description Data Objects

Querying Querying V4Design database for assets V4Design assets

Importing Downloading the binaries of the assets V4Design assets

Developing Development of environments using the
assets

V4Design assets

Scripting Attaching predefined scripts to assets V4Design assets

Uploading Uploading assets V4Design assets

Related elementary user requirements

UR NB HLUR NB Description

D6.2 – V1.0

Page 72

UR_53 HLUR_203
HLUR_208
HLUR_212
HLUR_215

As a Content Provider I want to receive statistics about which items are being seen
and/or downloaded from my repository, so I can generate reports on the impact
of my content - To know what extent one can re-use and repurpose, and possibly
have to attribute, the on-going works

UR_61 HLUR_212 As a content provider I want to have game analytics from the authoring tool - Any
game require analytics to better serve to the customers

UR_63 HLUR_212
HLUR_213
HLUR_215

As a film production company I want to be able to put location of the assets, such
as putting the asset in the exact place as intended. A 3D drag-and-drop would be
required

UR_65 HLUR_214
HLUR_215

As a film production company I want to be able to choose each asset for a time
span - This will help in IP protection and also help in development of updated
assets

UR_69 HLUR_205
HLUR_207
HLUR_208

Batch Download/Load of assets. Have the ability to load multiple assets at once.

API connector - development language

C#

Development libraries used

Some external scripts may be used.

Local Storage

Local storage of preferences, cached assets, etc. will occur on the local file system.

Data objects stored in Local Storage

Data object name: Assets and scripts
Storage format: media and source files

Related technical requirements

TR NB Description Function Function performed
Related
URs

TR_VR_1
Retrieve 3D models from V4D
Asset Repository

Combined
Query

Query and retrieve 3D models of
different resolutions from the
V4Design repository

UR_002

TR_VR_2
Retrieve textures from V4D
Asset Repository

send boundbox and retrieve the
texture delimited by the box

UR_003

TR_VR_3 Retrieve asset metadata
The Query results have their
metadata integrated, or made
accessible (via URIs)

UR_006,
UR_007,
UR_039

D6.2 – V1.0

Page 73

TR_VR_4 Query V4D asset repository Query resources by any field
UR_012,
UR_013

TR_VR_5
Personal assets library, discover
new assets

Query mechanism encourages
discovery

UR_025

TR_VR_6
Save asset as different file
format

Save assets
Save assets locally in different
compatible formats

UR_014,
UR_008

TR_VR_7
Manipulate V4D 3D models in
VR

Manipulate
assets

View and manipulate 3D models in
an interactive way (rotate, zoom,
etc.)

UR_010

TR_VR_8
Preview and markup of V4D
assets

Asset viewer

Obtain low-resolution instances of
images, videos and 3D models

UR_011,
UR_009

TR_VR_9
Visualize retrieved V4D assets
in VR

View any V4D asset (image, video, 3D
model, etc.)

UR_020

TR_VR_10 Simple UI/UX Intuitive and simple GUI design UR_022

TR_VR_11 Provide open source code Tool Source code to be made available UR_023

D6.2 – V1.0

Page 74

6 REQUIREMENTS OVERVIEW

Theme TR NB Description Function
Function

performed Related URs

Crawling and
data storage

TR_DS_1 Data Storing Data push

Sending and storing of
resource(s) to a target
database.

UR_1, UR_59,
UR_62

TR_DS_2 Data retrieval Data pull

Retrieval of
resource(s) from a
target database.

UR_2, UR_3,
UR_4, UR_35,
UR_37, UR_51,
UR_69, UR_70

TR_CR_1

Using a set of URLs as
web entry points, collect
all the hyperlinked URLs,
up to a predefined depth.

Web crawling
Discovers nodes to
scrape

UR_10, UR_11,
UR_16, UR_21,
UR_22, UR_55,

UR_56

TR_CR_2
Add more keywords to

refine the search
operations.

Query
expansion

Discovery of extra
keywords relevant to
the input query

TR_CR_3

With the help of API,
search a web application
(e.g. Flickr) using textual

queries.

Web search

Depending on the
available APIs,
scraping may also be
performed

TR_CR_4

Web scraping
Extracts content from
web pages

TR_CR_5

Search and collect social
media posts relevant to a

keyword or a user
account.

Social media
crawling &
scraping

Extracts content from
social media

UR_10, UR_16,
UR_21, UR_24,

UR_55

TR_CR_6

looks at the FTP server
folders of a content

provider to see if any new
content has been added,

and if so extracts it to add
to data storage

FTP crawling
extracts content from
the V4design FTP
server

TR_CR_7

based on an EDM file or a
generic JSON file, check if

this JSON is SIMMO-
compliant. If not, use

predefined maps to make
this JSON file SIMMO

compliant. Send to data
storage

data model
mapping

maps incoming data
from the incoming
data model to SIMMO
JSON

TR_CR_8

Application of classifiers
that categorize the
resources as appropriate
or not for our purposes

Resource
filtering

categorizing the
resources as
appropriate or not for
our purposes

Textual
analysis

TR_LA_1
Extract knowledge from
textual data to be able to
map it to the KB Linguistic

Analysis

Tokenization, Part-of-
speech tagging,
Lemmatization,
Surface-syntactic
parsing

UR_10, UR_11,
UR_12, UR_13,
UR_14, UR_15,
UR_16, UR_17,
UR_18, UR_19,

D6.2 – V1.0

Page 75

TR_LA_2 Concept
extraction

Word Sense
Disambiguation, Entity
linking

UR_20, UR_21,
UR_23, UR_35,
UR_56, UR_57,

UR_64

TR_LA_3 Relation
Extraction

Deep-syntactic
parsing, Conceptual
relation extraction

TR_LG_1
Select content to be
generated as texts and
shown to the users.

Text Planning

identify contents
related to the queried
entity, assesses their
relevance relative to
this entity

UR_21, UR_23,
UR_57, UR_64

TR_LG_2
Render the selected
content as text.

Linguistic
Generation

Generates text in
target language

UR_10, UR_11,
UR_12, UR_13,
UR_14, UR_15,
UR_16, UR_17,
UR_18, UR_19,
UR_20, UR_21,
UR_23, UR_57,

UR_64

Visual
analysis

TR_AE_1

extract texture and style
for images and videos so
as to be able to retrieve
patterns, textures and

styles

Aesthetics
extraction (AE)

Aesthetics extraction
from paintings,
clustering, model
extraction and storing
on a local file storage

UR_3, UR_4,
UR_41

TR_TP_1

combine textures and
styles to propose them in
the generation of a new

image

Texture
proposals (TP)

Transfer painting style
from the desired
image or aesthetic
model and pass it to
the goal image

UR_3, UR_4,
UR_25, UR_27,
UR_41, UR_42

TR_OL_1
provide locations of
buildings and objects in
an image or a video

BOL

Scene recognition on
the image or video
frame:
- Define whether a
video contains data of
interest (i.e. building,
object) and define its
location in the video
- Define whether an
image contains a
building, object,
painting

UR_63

TR_OL_2
provide binary masks of

the buildings and objects
which are detected

STBOL

Semantic
segmentation on the
provided image/
video:
- Segments the video
in a spatio-temporal
manner so as to
extract masks of
interest
- Segments the image
in a spatial manner to
extract the masks of

UR_25, UR_63

D6.2 – V1.0

Page 76

interest

TR_3D_1
Extract and build a 3D

model Reconstruct

Build a 3D model from
the collection of
images or video

frames

UR-8, UR-2, UR-7,
UR-20, UR-6, UR-

16

Semantics
analysis

TR_KB_1
Map analysis results from
other modules

KBPopulation
RDF mapping and KB
population

UR_2

TR_KB_2
Provide an API over the
KB for querying metadata

TR_KB_3
Map metadata about
texture resolution

UR_3

TR_KB_4
Map analysis results from
building localisation

UR_10, UR_20,
UR_57

TR_KB_5
Map analysis results from
object localisation

TR_KB_6
Map analysis results from
aesthetics

TR_KB_7
Map analysis results from
text analysis

TR_KB_8
Map analysis results from
reasoning

TR_KB_9
Map metadata about
quality

UR_12, UR_37

TR_KB_10
Map geo-location of
assets UR_15

TR_KB_11 Map date (creation date)

TR_KB_12 Map author info
UR_16

TR_KB_13 Map copyright info

TR_KB_14 Map visible colours UR_18

TR_KB_15
Map metadata coming
from 3D model
reconstruction

UR_20

TR_KB_16
Map results from text
generation

UR_21

TR_KB_17
Ability to associate assets
with relevant external
Web Pages

UR_22

TR_KB_18
Map results from text
generation

UR_23

TR_KB_19
Associate assets with
preview thumbnails

UR_30

TR_KB_20
Ability to map texture
mayerial metadata

UR_41

TR_KB_21
Support the linking of
assets with relevant ones

UR_50

TR_KB_22
Support the annotation of
assets with reuse rights

UR_55

D6.2 – V1.0

Page 77

and copyrights

TR_KB_23
Map analysis results from
text generation

UR_57

TR_RQ_1

Support searching
functionality (translation
of user requests into one
or more queries over the
data storage

Reasoning
Service

query formulation /
enrichment

UR_2, UR_50

TR_RQ_2
Infer geolocation from
location tag

Inference of implicit
relations and context

UR_15

TR_RQ_3
Propagate annotations
from other modalities to
the 3D models

Inference of implicit
relations and context

UR_20

TR_RQ_4

Find relevant external
Web page, based on the
annotation provided by
other components

Inference of implicit
relations and context

UR_22

TR_RQ_5
couple searching
functionality with text
analysis on the keywords

query formulation /
enrichment

UR_35

TR_RQ_6
Find assets relevant to
other assets

Inference of implicit
relations and context

UR_50

Middleware

TR_RA_1
Create a user profile

Create user Helps user tools to
create users

UR_022

TR_RA_2

Create login credentials
for a user

User Login Helps user tools to
login to the system
and authenticate
them

TR_RA_3
Create new asset

Create Asset Helps user tools to
create asset details UR_1, UR_59,

UR_62, UR_014,
UR_008

TR_RA_4
Upload new asset

Upload Asset Helps users to upload
assets

TR_RA_5

Get latest asset (texture,
3D model) from DB

Get Latest
assets

Gets the latest assets
from the database

UR_2, UR_3,
UR_4, UR_35,

UR_37, UR_51,
UR_69, UR_70

TR_RA_6

Search V4Design DB for
assets

Search Searches the database
for assets based on a
specific field

UR_2, UR_3,
UR_4, UR_35,
UR_37, UR_51,
UR_69, UR_70

TR_RA_7 Rate an asset Rating Rates an asset

UR_014, UR_008
TR_RA_8

Comment an asset
Comments Adds a comment to

the asset

Authoring
tools

TR_RN_1
Retrieve 3D models from
V4D Asset Repository

Combined
Query

Query and retrieve 3D
models of different
resolutions from the
V4Design repository UR_002

TR_RN_2
Retrieve textures from
V4D Asset Repository

send boundbox and
retrieve the texture
delimited by the box UR_003

D6.2 – V1.0

Page 78

TR_RN_3 Retrieve asset metadata

The Query results
have their metadata
integrated, or made
accessible (via URIs)

UR_006, UR_007,
UR_039

TR_RN_4
Query V4D asset
repository

Query resources by
any field UR_012, UR_013

TR_RN_5
Personal assets library,
discover new assets

Query mechanism
encourages discovery UR_025

TR_RN_6
Save asset as different file
format Save assets

Save assets locally in
different compatible
formats UR_014, UR_008

TR_RN_7
View V4D 3D models in
VR

Asset viewer View 3D models in an
interactive way
(rotate, zoom, etc.) UR_010

TR_RN_8
Preview and markup of
V4D assets

Obtain low-resolution
instances of images,
videos and 3D models UR_011, UR_009

TR_RN_9
Visualize retrieved V4D
assets

View any V4D asset
(image, video, 3D
model, etc.) UR_020

TR_RN_10 Simple UI
Intuitive and simple
GUI design UR_022

TR_RN_11 Open source Tool
Source code to be
made available UR_023

TR_VR_1
Retrieve 3D models from
V4D Asset Repository

Combined
Query

Query and retrieve 3D
models of different
resolutions from the
V4Design repository UR_002

TR_VR_2
Retrieve textures from
V4D Asset Repository

send boundbox and
retrieve the texture
delimited by the box UR_003

TR_VR_3 Retrieve asset metadata

The Query results
have their metadata
integrated, or made
accessible (via URIs)

UR_006, UR_007,
UR_039

TR_VR_4
Query V4D asset
repository

Query resources by
any field UR_012, UR_013

TR_VR_5
Personal assets library,
discover new assets

Query mechanism
encourages discovery UR_025

TR_VR_6
Save asset as different file
format Save assets

Save assets locally in
different compatible
formats UR_014, UR_008

TR_VR_7
Manipulate V4D 3D
models in VR

Manipulate
assets

View and manipulate
3D models in an
interactive way
(rotate, zoom, etc.) UR_010

TR_VR_8
Preview and markup of
V4D assets

Asset viewer Obtain low-resolution
instances of images,
videos and 3D models UR_011, UR_009

TR_VR_9 Visualize retrieved V4D View any V4D asset UR_020

D6.2 – V1.0

Page 79

assets in VR (image, video, 3D
model, etc.)

TR_VR_10 Simple UI/UX
Intuitive and simple
GUI design UR_022

TR_VR_11 Provide open source code Tool
Source code to be
made available UR_023

D6.2 – V1.0

Page 80

7 REQUIREMENTS ANALYSIS AND APPLICATION

In the previous sections, we have introduced and discussed the technical specifications and
requirements of all the V4Design platform components, in addition to the specifications of
its architecture and integration model. Although some of these specifications may change or
evolve throughout the project as new requirements become clear or as adjustments are
made to original approaches, the bulk of these specifications us solid enough to perform a
first-hand analysis of the platform’s technical requirements.

In this section, we conduct an analysis of the specifications and requirements that aims to
consolidate certain functional and non-functional aspects related to the architecture design
specifications, and to provide guidelines for using these specifications in the implementation
and evaluation of the platform. The objectives of this analysis is to congregate, aggregate,
and compare related or connected technical requirements and specifications in order to
insure overall compatibility, between the modules as integrated elements of a single
architecture, and between these modules and the platform-level processes. On the basis of
this analysis, we draw recommendations for the developers of the V4Design architecture
modules.

In order to perform such as analysis, we define the following three axes of concern upon
which the collected technical requirements and specifications will be analysed:

- Data management, including data exchange mechanisms between different modules

- Messaging, including the definition of message topics

- Platform cycle, including the chaining of components to implement the platform
processing pipeline.

7.1 Data management specifications

In section 3 we described the specifications of the data management in the V4Design
platform, arguing about the relation between data objects and platform components,
introducing the Data Storage and Retrieval component as the platform’s centralized
repository, and explaining the necessary mechanisms for storing and retrieving data in this
storage. In complementation, we have defined the data objects used as input and those
generated by each module in the platform in section 4. In the following, we discuss a unified
data schema that specifies how data is formatted throughout the system. This unified data
schema is applied to all data exchanged in the system through the Data Storage and
Retrieval. Other formats can be used locally (inside the services’ local storages) or by the
user tools (stored separately outside the platform, on the tool’s own server).

Given that the Crawler and other modules in charge of ingesting data into the system use
the SIMMO data model [10], and that the Data Storage and Retrieval is implemented in a
manner compatible with this format, we recognize that the system’s raw data will be in the
SIMMO format, including all data imported by the user.

In figure 19, we show an abstraction of the SIMMO format, showing how each data object
contains an instance of a Source object where metadata about its origin, use, and acquisition
is stored, and one or more Text object and Media object. The Media object may be either an

D6.2 – V1.0

Page 81

image or a video. Media objects may contain thumbnail images and other metadata.
Similarly, the Text object may contain semantically related metadata.

Figure 19: an abstraction of the SIMMO data model

Therefore, and since each service adds another component or metadata to the data object it
uses as input, we construct the V4Design data object schema on the basis of SIMMO,
augmenting the original model with instances of objects, each the result of a given service.
These are integrated in the model in a manner that takes into account their interrelation
with the SIMMO object’s elements. This V4Design data object schema is presented in the
following figure.

Figure 20: The V4Design data object schema

D6.2 – V1.0

Page 82

Therefore, each platform component should send its output to the Data Storage and
Retrieval following this schema. Modifications to this schema could be contemplated on the
basis of necessities and changes that services can incur during their integration and
adaptation to the platform’s processing cycle. For instance, a service may output a series of
objects instead of a single result self-contained in a single object; or a service may associate
a single modular output to a series of input objects. In all cases, the proposed data object
schema is a good initial solution since it accommodates all services according to their current
specifications.

7.2 Messaging

In section 4 we have identified the messages that each component sends and expects to
receive. In addition, we have discussed the specifications of the message bus in section 4.2.
Furthermore, details about the message bus were presented in the deliverable D6.1,
including important technical specifications such as no data is channelled through the
message bus, and that data is referenced by URIs.

According to the model chosen for the platform, the messages are decentralized: i.e. each
component is responsible for informing other components of its actions. If the messages are
about data (instead of status or other concerns), and if they are associated with newly
generated output from the component, then the data must be pushed to the Data Storage
and Retrieval before emitting the message. This way, this data is already available before it is
requested by other components.

In addition, since the data storage will respond to any push request with a response
indicating the URIs of the newly saved data, there URIs should be included in the subsequent
message emitted by the component. This implies that the data storage will NOT emit
messages regarding the status of the data. The messages emitted by the data storage are
mainly responses to data queries (in addition to technical messages, such as status and
authentication).

Consequently, messages about new data are emitted by the crawlers & wrappers, and
messages about processing data are emitted by the services.

Therefore, an effective chaining of the platform services will allow the services to work
together without the need to query for new data; they can directly retrieve the data objects
using their URIs from the messages that they receive. Only services that need to make a
decision on whether their process data or not (e.g. depending on its availability or
completeness), may have to make data queries.

In the following table, we summarize the message topics defined on the basis of the
information and specifications collected and discussed in section 4. It shows that the
platform requires no less than 14 topics, some are broadcasts such as “data_available”,
others are directed to a single receiver such as in the case of queries and responses, and
others are shared among more than two components.

Topic ID Component Input Output Data stored in storage

DATA_AVAILABLE
Crawler URL or query SIMMOs Raw SIMMOs

D6.2 – V1.0

Page 83

DATA_AVAILABLE
DataWrapper
(EDM) API parameters SIMMOs Raw SIMMOs

QUERY_RESPONSE
Data Storage
and retrieval Query raw data an array of SIMMOs N/A

QUERY_RESPONSE
Data Storage
and retrieval

Query processed
data an array of assets N/A

OBJECT_LOCALIZED
Object
localization Single SIMMO

one JSON per media
describing where the mask
image is stored, including
Type and Tags

Store JSON by original
SIMMO ID & Media ID

TEXT_ANALYZED Language
Analysis Single SIMMO one JSON per Simmo

Store JSON by original
SIMMO ID & (Text ID or
Media ID)

OBJECT_RECONSTRUCTED 3D
Reconstruction SIMMO Collection?

3D model + JSON

(list of possible
reconstructions)

Store generated 3D model +
metadata

LANGUAGE_GENERATED
Language
generation

Single SIMMO with
ontological info
from Knowledge
Base + TA JSON one JSON per Simmo

Store JSON by original
SIMMO ID & (Text ID or
Media ID)

TEXTURE_EXTRACTED
Texture
Proposals

Single SIMMO +
user input (zone) JPG + JSON per SIMMO

Store JSON by SIMMO ID &
Media ID

AESTHETICS_EXTRACTED
Aethstetic
Extraction Single SIMMO

one JSON per Simmo + JSON
of OL

Store JSON by SIMMO ID &
Media ID

KB_POPULATION_FINISHED KB Population
Single SIMMO + the
JSONs No output N/A

REASONING_FINISHED Reasoning KB updated No output N/A

SEARCH_FINISHED
Reasoning
(searching)

REST API filters
Collections of assets
matching the incoming
query

N/A

QUERY REST API Query parameters an array of assets N/A

TEXTURE_REQUESTED REST API Texture parameters Texture asset N/A

Table 10: Message topics for V4Design platform components

In the following figure, we show how these messages connect the different platform
components, allowing each to perform or to execute in turn, after the relevant data
becomes available. This tight communication between the platform components is the main
aspect of the platform integration.

D6.2 – V1.0

Page 84

Figure 21: The V4Design data object schema

7.3 The platform cycle

The introduction of the message topics and their use to connect the different services allow
to complete the processing pipeline of the platform, which refers to the chaining and the
ordering of the execution of different services. Some services are designed to work with raw
data as ingested by the crawlers, but some services require output from other services, and
therefore they rely on a correct design of the processing pipeline to perform effectively
within the architecture.

In the following figure we show how the processing pipeline and cycle are organized. The
numbers reveal the chronological order by which the messages are emitted. It starts with
new data, and ends with extraction of texture upon a user request. This pipeline design is
expected to evolve and change throughout the project.

D6.2 – V1.0

Page 85

Figure 22: The processing pipeline and its cycle

During this cycle, the platform builds upon original data objects, adding new components to
each one of them as it goes through the process. In the following figure, we visualize this
process by applying the cycle onto the V4Design data object schema.

Figure 23: The platform cycle applied to the V4Design data object schema

Finally, we show how the data is generated during this cycle in the following figure that
visualizes how each component reads and writes data during the cycle.

D6.2 – V1.0

Page 86

Figure 24: Data read/write operations during the platform cycle

D6.2 – V1.0

Page 87

8 CONCLUSIONS

In this deliverable we have presented and discussed the technical specifications of the
V4Design platform based on early analysis that precedes the implementation of its first
operational prototype. After a short introduction on the general practices for requirements
collection and analysis, and the delimitation of the scope of such activity in the context of
V4Design, we discussed the technical specifications, first on a platform level, and then on a
module level, addressing services, middleware, and user tools. Finally, we conducted an
aggregative analysis of requirements by which common concerns related to the architecture
design specifications (data management, messaging, and platform processing pipeline) were
revisited, and extended by relying on the elementary specifications collected.

In order to meet the user requirements defined under the usage scenarios and use cases,
the implementation the platform will follow an iterative approach by which at least three
distinct versions will be implemented and evaluated, one after the other. Therefore, the
particular set of user requirements that are addressed under a specific version should be
isolated and clearly stated in order to orient the user evaluations. For instance, it is expected
that the first “proof-of-concept” version of the platform, otherwise known as V1, will
incorporate rudimentary and basic functions. The following version V2 will address use cases
1 and 2 more in depth, and demonstrate the viability and added-value of the processes
described by these use cases.

Therefore, we expect the specifications to evolve in accordance with the evolution of the
platform’s implementation, and the results of consequent experimentation with integrated
prototypes. In fact, several issues have been raised during this analysis that cannot be solved
without experimenting with early prototypes. For instance, the 3D Reconstruction service
needs to identify and isolate collections of media objects containing the same object to
reconstruct. This decision-making paradigm is currently under research with several possible
solutions considered.

Finally, this analysis was an effective coordination and knowledge sharing and building
exercise by which all partners have converged onto a common understanding of the
specifications, functionalities and architecture of the intended platform, which allows and
facilitate ad-hoc development efforts. Indeed, the standardization of major concerns, such
as data management, data schemas, messaging, integration models, roles, and
interdependencies was a necessary step to insure a more streamlined development.

D6.2 – V1.0

Page 88

9 REFERENCES

[1] Eeles, P. (2005). Capturing architectural requirements. IBM Rational developer works.

[2] Liao, L. (2002). From Requirements to Architecture: The State of the Art in Software
Architecture Design. Department of Computer Science and Engineering, University of
Washington, 1-13.

[3] Lehman, Meir M. The programming process. internal IBM report, 1969.

[4] Lehman, M.M.; Belady, L.A. (1985). Program evolution : processes of software change.
London: Academic Press Inc. ISBN 0-12-442441-4.

[5] Lehman N, Meir M., et al. Metrics and laws of software evolution-the nineties view. En
Software metrics symposium, 1997. proceedings., fourth international. IEEE, 1997. p. 20-32.

[6] Grady, Robert; Caswell, Deborah (1987). Software Metrics: Establishing a Company-wide
Program. Prentice Hall. p. 159. ISBN 0-13-821844-7.

[7] Clegg, Dai; Barker, Richard (2004-11-09). Case Method Fast-Track: A RAD Approach.
Addison-Wesley. ISBN 978-0-201-62432-8.

[8] Clements, P., Kazman, R., & Klein, M. (2003). Evaluating software architectures. Beijing:
Tsinghua University Press.

[9] Kulak, Daryl and Eamonn Guiney. “Use Cases: Requirements in Context”: pages 19, 20.
Addison-Wesley, 2012

[10] T. Tsikrika, K. Andreadou, A. Moumtzidou, E. Schinas, S. Papadopoulos, S. Vrochidis, Y.
Kompatsiaris, "A Unified Model for Socially Interconnected Multimedia-Enriched Objects",
21st MultiMedia Modelling Conference (MMM2015), Sydney, Australia, 5-7 January, 2015

D6.2 – V1.0

Page 89

A Appendix A: V4Design Service Definition Template

A “service” is defined as a standalone component of the platform architecture. It
communicates with other services as a single entity or point. Internally, a service may
integrate different components, each with a specific role of function, but externally the
service acts as an integrated application. A service can be hosted on its own independent
server, and is managed by a service owner that is responsible for the health of the service.

Please use the following template to define formally each service that would be integrated
in the V4Design platform. The information required and defined in this template centre on
the aspects that govern the relationship of this service with other services and middleware
components of the integrated V4Design service platform. Please fill it to the extent possible.

DEFINITION

Official name of the service:

Service owner:

Short description:

STATUS

Current instance status:

(Deployed / Alpha / In-development / Concept)

If NOT currently deployed

Expected date for delivering a stable version:

If currently deployed:

Current version:

Expected date of next release:

FUNCTIONALITIES

Describe the main functions of the service that will be made available for the platform:

(Requests supported by the service)

Name Description Data input

(from other services)

Data output

(to other services)

 E.g. 3D Models ← non-semantic
data service

For each of these functions, specify the following:

Name Request type / topic

(message received)

Response type /topic

(message emitted, if any)

Expected response
time

Capacity

(nb requests
handled)

D6.2 – V1.0

Page 90

According to current plans for integration, service-to-service direct communication is to be
eliminated, and all communication routed through the message bus. Data will not be
encapsulated or contained within messages, unless it implements the resource and area
segments of the CAP protocol used to encode the message’s content.

In case you are planning to support direct communication between your service and other
services, shortcutting the message bus, which are these other services? what
communication protocol would be used?

(Please identify any communication managed outside the realm of the platform’s message
bus)

SERVICE REQUIREMENTS

For documentation purposes, please describe briefly the service requirements as a
standalone application:

- Deployment environment and architecture model
- Expected capacity in processing requests
- Expected availability and reliability of the service
- Data integrity policy (if relevant)
- Interoperability requirements (if relevant)

TECHNICAL CONCERNS

Does the service store data locally?

(Identify the relevant data objects stored and describe the type of storage.)

In this case, does the service provide data for other services, and under which protocol?

Describe how the service handles security

(Identify the security protocol that the service implements locally)

Describe the service scalability model:

(Specify if the service scales vertically or horizontally, or does not scale)

MESSAGING CONCERNS

Events under which the service sends notification or broadcasting messages through the bus

Event name Description Message type / topic Message receiver(s)

(other services)

Data

(if any)

D6.2 – V1.0

Page 91

Events under which the service receives requests and notifications from other services

(If yes, please elaborate)

Event name Description Sender(s)

(other services)

Message or
notification type /
topic

Response type /
topic

(if any)

Please make sure that the Request messages supported by the service have been defined in
the “functionalities” section, in relation with the service’s supported functionalities.

Does the service need message scheduling?

(If yes, please elaborate)

Does the service implement its own message queue?

(If yes, please describe the queue concisely)

D6.2 – V1.0

Page 92

B Appendix B: Requirements Definition of V4Design Service

Service Name:

Service Owner:

Service Description:

In the following diagram, we introduce the conceptual design of a V4Design service.

Accordingly, each service is composed of the following main components:

- The message coder / decoder: codes messages in AMQP protocol, and the message
content according to the CAP protocol.

- The service queue: queues requests or messages sent to the service in order to
manage the service pipeline. Services that can processes messages in parallel may
not need a queue

- The authentication mechanism: stores authentication information and/or manages
authentication requests where relevant (NOT considered relevant for V1 of the
integrated platform).

- The Service core: the service core comprises of the actual service functionalities and
mechanisms.

D6.2 – V1.0

Page 93

1 - The hosting Server:

Please provide the technical requirements of the server you are planning to host the service on.

S.01. Please describe the server’s minimum hardware requirements

Operating System:

CPU:

RAM:

Disk Space:

Please list the software requirements of the server you are planning to host the service on.

S.02. Please describe the server’s software requirements (basic software solutions that
need to be installed, e.g. Apache Tomcat, MySQL, Python, Java, etc..). Provide the version
required in each case.

2 - The service Core:

C.01. Please define the functional/technical components that make us the service. Each

component can represent a unitary function. Chained together, the components form the

processes/pipelines implemented by the service.

Component name Data input Data output Function(s)
performed

C.02. Please provide a simple diagram that illustrate the conceptual/logical design of the

service core, showing how the components are chained together.

we suggest to use https://www.draw.io/

https://www.draw.io/

D6.2 – V1.0

Page 94

C.03. Please define the global functions of the Service

Each global function may involve one or more components listed in C.01.

Function Description Data input Data output Components

C.04. Please link the service to the project’s user requirements

Specify which of the user requirements involve this service, The Requirements are listed here:

https://docs.google.com/document/d/1QQ0qWRz5f0UasqxlM8ZuZTKzGuzZArvaYyJU2nEqSU8/edit

Trigger refers to how the service function is triggered, e.g. request received, service status changed, etc.

Requirement

S. No.

Service Function Trigger Required data object(s)

C.05. Please define the data objects generated by the Service

For each data object, please copy-paste and fill the following:

Data object name:

Service function (see C.03):

Data schema:

For each field, please specify:

- Field name:

- Type:

- Allowed values:

3 - The message coder / decoder

Please check:

AMQP specifications: https://www.amqp.org/resources/download

https://docs.google.com/document/d/1QQ0qWRz5f0UasqxlM8ZuZTKzGuzZArvaYyJU2nEqSU8/edit
https://www.amqp.org/resources/download

D6.2 – V1.0

Page 95

CAP specifications: http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

M.01. In which language will you write your encoder/decoder?

M.02. Are you using any external library? Which one (provide a link if applicable)?

Please check available libraries and solutions online, for instance:

Ajax: http://activemq.apache.org/ajax.html

Python: https://github.com/guardicore/haigha2

Others: http://activemq.apache.org/connectivity.html

M.03. Please define the messages that will be sent by the service

Take into account the following types of messages:

Broadcast: a service broadcasts a message to inform other services of changes in its status-quo, including the arrival of new
data, the completion of a process, and so on.

Service-to--Service: a service places a request to another service, which could include a query for data, a trigger for a
function, and so on.

Message name Function (see C.03) Receiver(s) Related data objects

M.04. Please identify the messages that will be received by the service

Message name Function (see C.03) Sender Related data objects

4 - The Queue

Q.01. Are you planning on integrating a queuing solution? At which project month?

Q.01N. If NOT, what is the expected processing capacity of the service (request per second

or requests per minute?)

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
http://activemq.apache.org/ajax.html
https://github.com/guardicore/haigha2
http://activemq.apache.org/connectivity.html

D6.2 – V1.0

Page 96

Q.01Y. If YES, are you using any external library? Which one (provide a link if applicable)?

5 - The Local Storage

 If you are planning to store data locally (in a database or file system, please provide details on how this is does), please
specify the following specifications:

T.01. What data storage solution will you adopt? (database, file system, etc..).

T.02. If you are using existing data storage solutions (e.g. MySQL), please specify:

Name:

URL:

Version:

Dependencies, if any:

T.03. What Is the estimated disk space required for the data storage?

T.04. Define the data objects stored in the Local Storage, and their schema (fields, their

types and expected values)

If you data schema is large, or you prefer using a UML-like notation, we suggest to use https://www.draw.io/

For each type of data objects, please copy-paste and fill the following:

Data object name:

Storage format:

Data schema:

For each field, please specify:

- Field name:

- Type:

https://www.draw.io/

D6.2 – V1.0

Page 97

- Allowed values:

D6.2 – V1.0

Page 98

C Appendix C: Specs and mechanisms for data storage and
retrieval

Output data storage

Please describe where the output of your modules is going to be stored. The output could be
either temporary, i.e. the output is needed only by some other module, so there is no need
be persisted for longer, or it can be directly queried and showed in the interface, e.g. a 3D
model.

Example storage types: file system (e.g. simple folders), database (e.g., MySQL), RDF triple
store, other.

Module Storage type Details / comments

e.g. Building localisation file system (for the images) -

database (for the metadata
file)

MySQL

Access to the data

Please describe the way the other modules will be able to get / query for the data. More
specifically, describe abstractly the content of the message that will be sent to the message
bus that will designate the way the output data will be retrieved. You should have in mind
that since we are talking about a distributed architecture, the data should be able to be
retrieved remotely.

Module Message content

e.g. Building localisation the ftp path from where the images can be retrieved, along
with an SQL query for the relevant metadata from the
database (a query is needed only of the underlying data
schema is complex, e.g. how to join tables etc.)

 other possibility: the component may expose a web API, e.g. a
rest API, such as http://…#get-data?id=3, to serve as a web
interface that implements the retrieval mechanism

D6.2 – V1.0

Page 99

D Appendix D: Requirements Definition of A V4Design Tool

Tool Name:

Tool Owner:

Tool Description:

1 - User Profiles

 Please describe each technical profile supported by the tool (e.g. basic, advanced, admin, etc.)

S.01. For each supported profile, please describe the following

Profile name:

Role description:

Permissions:

Restrictions:

S.02. Describe the user authentication mechanism followed

Specify is users can utilize 3rd-party authentication, indicate which

2 - Usage environment

 Please describe details on how the user can use this tool

S.03. What is the installation / access model? (desktop app, cloud service, etc.)

S.04. What prerequisites are required? (browser version, dependency tools, etc.)

D6.2 – V1.0

Page 100

S.05. What are the technical specifications of the usage environment?

Operating System:

CPU:

RAM:

Disk Space:

Others:

3 - Deployment environment (Do not fill for desktop tools)

 Please describe details on the environment in which the tool is deployed

S.06. What software prerequisites are required?

S.07. What are the technical specifications of the deployment environment?

Operating System:

CPU:

RAM:

Disk Space:

Others:

S.08. How many simultaneously connected users can the tool support?

4 - The Tool Logical Design:

S.09. Please define the functional/technical components that make us the tool. Each
component can represent a unitary function. Chained together, the components form the
processes/pipelines implemented by the tool.

Component name Data input Data output Function(s)
performed

S.10. Please provide a simple diagram that illustrate the conceptual/logical design of the
tool, showing how the components are chained together.

we suggest to use https://www.draw.io/

https://www.draw.io/

D6.2 – V1.0

Page 101

5 - Functionalities:

S.11. Please define the main functionalities of the tool

Each global function may involve one or more components listed in C.01.

Functionality Description Data Objects

S.12. Please link the tool to the project’s user requirements

Specify which of the user requirements involve this tool, The Requirements are listed here:

https://docs.google.com/document/d/1QQ0qWRz5f0UasqxlM8ZuZTKzGuzZArvaYyJU2nEqSU8/edit

Requirement Serial. No. Functionality

6 - The message coder / decoder

Please check AMQP specifications: https://www.amqp.org/resources/download

S.13. In which language will you write your encoder/decoder?

S.14. Are you using any external library? Which one (provide a link if applicable)?

Please check available libraries and solutions online, for instance:

Ajax: http://activemq.apache.org/ajax.html

Python: https://github.com/guardicore/haigha2

Others: http://activemq.apache.org/connectivity.html

https://docs.google.com/document/d/1QQ0qWRz5f0UasqxlM8ZuZTKzGuzZArvaYyJU2nEqSU8/edit
https://www.amqp.org/resources/download
http://activemq.apache.org/ajax.html
https://github.com/guardicore/haigha2
http://activemq.apache.org/connectivity.html

D6.2 – V1.0

Page 102

S.15. Please define the messages that will be sent by the tool

Take into account the following types of messages:

Broadcast: a service broadcasts a message to inform other services of changes in its status-quo, including the arrival of new
data, the completion of a process, and so on.

Service-to--Service: a service places a request to another service, which could include a query for data, a trigger for a
function, and so on.

Message name Functionality Receiver(s) Related data objects

7 - The Local Storage

If you are planning to store data locally (in a database or file system, please provide details on how this is done), please
specify the following specifications:

S.16. What data storage solution will you adopt? (database, file system, etc..).

S.17. If you are using existing data storage solutions (e.g. MySQL), please specify:

Name:

URL:

Version:

Dependencies, if any:

S.18. What Is the estimated disk space required for the data storage?

S.19. Define the data objects stored in the Local Storage, and their schema (fields, their
types and expected values)

If you data schema is large, or you prefer using a UML-like notation, we suggest to use https://www.draw.io/

https://www.draw.io/

D6.2 – V1.0

Page 103

For each type of data objects, please copy-paste and fill the following:

Data object name:

Storage format:

Data schema:

For each field, please specify:

- Field name:

- Type:

- Allowed values:

D6.2 – V1.0

Page 104

E Appendix E: REST API Specifications

2018-10-18

Contents

General 2

Requests 2

Response 2

Request Scheme 2

HTTP response codes 2

Security 2

Open Questions 2

Answered Questions 2

API 4

User 4

Create 4

Login 4

Assets 5

Create 5

Upload 5

Update 5

Latest 6

Get 7

GetHistory 7

SearchByTags 7

SearchByAddress 8

SearchByReferenceDate 9

Rating 11

Rate 11

Get 11

https://docs.google.com/document/d/1PaYV0f03icmuzJn52qdBX8EMlIbjgkOJN292yoIvJvI/edit#heading=h.3whwml4

D6.2 – V1.0

Page 105

General

Requests

● GET = no body or JSON body
● POST = JSON body or binary file data
● Some requests require a valid session to perform their action. If so the session id

must be sent in the request header as ‘SessionId’.

Response

● Response body as JSON
● On success send a request related response which is defined in each action
● On error send the response

{

 “Result”: “Error”,

 “ErrorMessage”: “String”

}

Where “ErrorMessage” is a clue to the occurred error.

● Some errors may not produce a valid JSON response body, in this case the body must
be ignored.

Request Scheme

[Server URL]/[Component]/[Action]/[Resource]

HTTP response codes

● 200 on processed action
● 400 on bad request
● 403 on missing or invalid session id
● 500 on server-side error
● 503 on server maintenance mode

Security

● HTTPS should be used for all requests
● Ticket System?
● How to send passwords?

Answered Questions

● Do we need a user/login system to upload/update assets?
o Yes

● Do we need a review system to add comments and rate assets?
o Yes

● What about the epoch models? Are these different assets or does each asset has two
models for two epochs? For example, do we have a model version for year 1950 and
for 2015 or are these two assets?

o Different assets

API

D6.2 – V1.0

Page 106

User

 Create

Creates a new user.
● POST
● [Server URL]/User/Create
● Valid Session Id required
● Request Body

{
 “UserName”: “String”,
 “Password”: “String”
}

● Response Body
{
 “Result”: “Success”
}

 Login

Logs the user in and creates a session.
● POST
● [Server URL]/User/Login
● Request Body

{
 “UserName”: “String”,
 “Password”: “String”
}

● Response Body
{
 “Result”: “Success”,
 “SessionId”: “String”
}

Assets

 Create

Creates a new asset in the database.
● POST
● [Server URL]/Assets/Create
● Valid Session Id required
● Request Body

{
 “Name”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,

D6.2 – V1.0

Page 107

 “Polygons”: int,
“EraYear”: int,

 “Tags”:
 [
 “String”,
 …
]
}

● Response Body
{
 “Result”: “Success”,
 “AssetId”: “String”
}

 Upload

Uploads the model file to the server.
● POST
● [Server URL]/Assets/Upload/AssetId
● Valid Session Id required
● Request Body

Binary File Data in fbx-Format
● Response Body

{
 “Result”: “Success”
}

 Update

Updates the information of an asset in the database.
● POST
● [Server URL]/Assets/Update/AssetId
● Valid Session Id required
● Request Body

{
 “UpdateMessage”: “String”,
 “Name”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,
 “Tags”:
 [
 “String”,
 …
]
}

D6.2 – V1.0

Page 108

● Response Body
{
 “Result”: “Success”
}

 Latest

Gets a list of the latest uploaded assets.
● GET
● [Server URL]/Assets/Latest
● Request Body

{
 “Page”: int,
 “Count”: int
}

● Response Body
{
 “TotalAmount”: int,
 “Assets”:

[
 {
 “AssetId”: “String”,
 “Name”: “String”,
 “DownloadUrl”: “String”,
 “ThumbnailUrl”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,

 “Tags”:
 [
 “String”,
 …
]

},
…

]
}

Get

Gets a specific asset.
● GET
● [Server URL]/Assets/Get/AssetId
● Response Body

{

D6.2 – V1.0

Page 109

 “AssetId”: “String”,
 “Name”: “String”,
 “DownloadUrl”: “String”,
 “ThumbnailUrl”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,
 “Tags”:
 [
 “String”,
 …
]
}

GetHistory

Gets the change history for an asset.
● GET
● [Server URL]/Assets/GetHistory/AssetId
● Response Body

[
 {
 “UserId”: “String”,
 “Date”: Timestamp,
 “UpdateMessage”: “String”

},
…

]
SearchByTags

Gets a list of assets with the matching tags.
● GET
● [Server URL]/Assets/SearchByTags
● Request Body

{
 “Tags”:
 [
 “String”,
 …

],
“Page”: int,
“Count”: int

}
● Response Body

{

D6.2 – V1.0

Page 110

 “TotalAmount”: int,
 “SearchResults”:

[
 {
 “AssetId”: “String”,
 “Name”: “String”,
 “DownloadUrl”: “String”,
 “ThumbnailUrl”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,
 “Tags”:
 [
 “String”,
 …
]

},
…

]
}

SearchByAddress

Gets a list of assets with a nearby location to a given address (e. g. a City).
● GET
● [Server URL]/Assets/SearchByAddress
● Request Body

{
 “Address”: “String”,
 “Page”: int,
 “Count”: int
}

● Response Body
{
 “TotalAmount”: int,
 “SearchResults”:

[
 {
 “AssetId”: “String”,
 “Name”: “String”,
 “DownloadUrl”: “String”,
 “ThumbnailUrl”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,

D6.2 – V1.0

Page 111

 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,
 “Tags”:
 [
 “String”,
 …
]

},
…

]
}

SearchByReferenceDate

Gets a list of assets with the matching reference dates.
● GET
● [Server URL]/Assets/SearchByReferenceDate
● Request Body

{
 “ReferenceDate”: “String”,
 “Page”: int,
 “Count”: int
}

● Response Body
{
 “TotalAmount”: int,
 “SearchResults”:

[
 {
 “AssetId”: “String”,
 “Name”: “String”,
 “DownloadUrl”: “String”,
 “ThumbnailUrl”: “String”,
 “Description”: “String”,
 “ReferenceDate”: Timestamp,
 “Longitude”: int,
 “Latitude”: int,
 “Polygons”: int,

“EraYear”: int,
 “Tags”:
 [
 “String”,
 …
]

},
…

]

D6.2 – V1.0

Page 112

}

Rating

Rate

Adds a rating to an asset.
● POST
● [Server URL]/Rating/Rate/AssetId
● Valid Session Id required
● Request Body

{
 “Rating”: int,
 “Comment”: “String”
}

● Response Body
{
 “Result”: “Success”
}

Get

Gets the ratings for an asset.
● GET
● [Server URL]/Rating/Get/AssetId
● Request Body

{
 “Page”: int,
 “Count”: int
}

● Response Body
{
 “Average”: float,
 “TotalAmount”: int,
 “Ratings”:
 [
 {
 “Rating”: int,
 “Comment”: “String”

},
…

]
}

