
Page 1

V4Design

Visual and textual content re-purposing FOR(4) architecture, Design and virtual reality
games - H2020-779962

D6.3

Operational prototypes and user
interfaces for architecture and VR game

design application

Dissemination level: Public

Contractual date of delivery: Month 12, 31 December 2018

Actual date of delivery: Month 12, 27 December 2018

Work Package: WP6: System integration and tool development for
content re-purposing

Task: T6.2: Development of VR and 3D game authoring tool
T6.3: Tool development for architects and designers
T6.4: System integration

Type: Report

Approval Status: Final version

Version: 1.0

Number of pages: 78

Filename: D6.3_V4Design_OperationalPrototypesAndUserInterfaces_2018
1227.pdf

Abstract

This deliverable presents the UI and UX prototypes, which will be designed for the architecture
and video game design applications of the V4Design platform. The document also describes the
technical components and infrastructure of the initial Operational Prototype for the V4Design
platform. It provides an overview of the demonstration application prototypes, the organisation

Page 2

and composition of the different modules and the hosting infrastructure. The Operational
Prototype will be the scaffolding on which the platform will be built iteratively, adding
functionality and depth on top of the dummy-based setup which marks this first milestone
The information in this document reflects only the author’s views and the European Community is not liable for any use that may
be made of the information contained therein. The information in this document is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

co-funded by the European Union

D6.3 – V1.0

Page 3

History

Version Date Reason Revised by

0.1 31/10/2018 ToC creation and content definition Ayman Moghnieh

0.2 07/11/2018 Initial feedback integration Ayman Moghnieh

0.3 29/11/2018 Partner’s contributions integration Ayman Moghnieh,
Yash Shekhawat

0.4 13/12/2018 Changes in document’s structure Ayman Moghnieh,
Yash Shekhawat

0.5 17/12/2018 1st integrated draft prepared and sent for
internal review

Ayman Moghnieh

0.6 20/12/2018 Internal review Jens Grivolla

0.7 21/12/2018 Incorporation of internal review suggestions Ayman Moghnieh

1.0 27/12/2018 Preparation of the final draft Ayman Moghnieh,
Konstantinos
Avgerinakis

Author list

Organization Name Contact Information

McNeel Ayman Moghnieh aymanmoghnieh@gmail.com

McNeel Luis Fraguada luis@mcneel.com

McNeel Verena Vogler verena@mcneel.com

NURO Yash Shekhawat yash.shekhawat@nurogames.com

NURO Boris Irmshcher boris.irmshcher@nurogames.com

NURO Sebastian Krauss Sebastian.krauss@nurogames.com

CERTH Spyridon Symeonidis spyridons@iti.gr

CERTH Elissavet Batziou batziou.el@iti.gr

CERTH Konstantinos Avgerinakis koafgeri@iti.gr

CERTH George Meditskos gmeditsk@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

UPF Simon Mille simon.mille@upf.edu

KUL Jens Derdaele jens.derdaele@kuleuven.be

KUL Maarten Vergauwen maarten.vergauwen@kuleuven.be

D6.3 – V1.0

Page 4

Executive Summary

D6.3 presents a demonstration of the envisioned platform by means of an operational
prototype. The prototype shows a rough sketch of the User Interface/User Experience (UI/UX)
and dummy implementations of the functionalities of the system. The operational prototype is
tested within four use cases: a) Architectural design, related to existing or historical buildings
and their environments, b) Architectural design, related to artworks, historic or stylistic
elements, c) Design of virtual environments, related to TV series and VR video games and d)
Design of virtual environments, related to actual news for VR (re-) living the date. Two of the
use cases (a, b) will implement the exterior and interior space using the V4Design architecture
authoring tool, while the other two (c, d) will utilize the V4Design video game authoring tool to
create the interior and exteriors of a Virtual Reality (VR) video game.

This document provides a brief technical reference for the D6.3 prototype deliverable of the
V4Design platform. First, it presents the architecture and the modules involved. Then, the
prototype applications testing the two aforementioned use cases are presented. In the next
sections, the code organization and the infrastructure are detailed. Finally, this document
provides links to live demo of the prototype and to the code repository.

D6.3 – V1.0

Page 5

Abbreviations and Acronyms

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CAD Computer Aided Design

DB Database

DLL Dynamic Link Library

GUI Graphic User Interface

HLURs High-level User Requirements

JMS Java Message Service

JSON JavaScript Object Notation

RDF Resource Description Framework

SQL Structured Query Language

TRs Technical Requirements

UI User Interface

UIMA Unstructured Information Management Architecture

URI Unique Resource Identifier

URs User Requirements

UX User Experience

D6.3 – V1.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 PROTOTYPE ARCHITECTURE ... 9

2.1 Global Architecture ... 9

2.2 Service prototypes and their development roadmaps ... 14
2.2.1 The Language Analysis ... 14
2.2.2 The Language Generation ... 19
2.2.3 The V4Design Crawler ... 21
2.2.4 Aesthetics Extraction and Texture Proposals (AE&TP) .. 24
2.2.5 KB Population .. 27
2.2.6 Reasoning .. 33
2.2.7 Spatio-Temporal Building and Object Localization (STBOL) .. 38
2.2.8 3D Reconstruction ... 42

2.3 Middleware modules and their development roadmaps ... 44
2.3.1 The V4Design Message Bus ... 44
2.3.2 V4Design REST API ... 45
2.3.3 Data Storage and Retrieval .. 47

2.4 Content Extraction Pipeline .. 50

3 PROTOTYPE APPLICATIONS ... 52

3.1 Message System Visualization .. 52
3.1.1 Description of the simulation .. 53
3.1.2 Testing the message bus implementation .. 54

3.2 Authoring tool for architects (V4D4Rhino) .. 55
3.2.1 Description .. 55
3.2.2 User and Technical Requirements ... 56
3.2.3 Development Tools ... 56
3.2.4 Development Plan ... 56
3.2.5 UI / UX ... 57
3.2.6 Tool evaluation .. 62
3.2.7 Tool exploitation (distribution, licensing, exploitation) .. 62

3.3 Authoring tool for video games... 63
3.3.1 Description .. 63
3.3.2 User and Technical Requirements ... 63
3.3.3 Development Tools ... 63
3.3.4 Development Plan ... 64
3.3.5 UI / UX ... 64

D6.3 – V1.0

Page 7

3.3.6 Tool evaluation .. 66
3.3.7 Tool exploitation (distribution, licensing, exploitation) .. 66

3.4 Web Platform (API Interface) .. 67

4 CODE ORGANIZATION ... 68

4.1 Source tree layout .. 68

4.2 Packaging ... 71

5 DEMONSTRATOR URLS AND INFORMATION ... 73

6 SUMMARY AND CONCLUSIONS ... 77

REFERENCES ... 78

D6.3 – V1.0

Page 8

1 INTRODUCTION

The V4Design project aims to repurpose visual and textual content for use in various industries,
including applications in architecture, design, and video game development. The mechanisms
which allow the repurposing of the content into 3d models and assets useful to designers in
these industries is but one aspect of the project which has been described in previous
deliverables (D6.1, D6.2). These mechanisms strive for a system architecture which is robust
enough to handle a variety of inputs and generate useful assets. This deliverable will also focus
on how these assets are made available to end users through a series of tools which integrate
into industry standard applications typically used in design and production workflows for
architectural design and video game development.

In D6.1, a general roadmap (Figure 1) and technical vision for the implementation of the
V4Design platform was established. The user requirements (URs#) were presented in D7.2,
while their correlation with the technical requirements (TRs#) and the technical vision of
V4Design platform were introduced in D6.2, where the global architecture of the system and its
subsystems, workflows and interfaces were defined.

Figure 1: Technical roadmap

The purpose of this document is to provide a brief technical reference for the D6.3 deliverable,
which is the first technical milestone of the project. D6.3 contains a first rough UI/UX for
V4Design platform and dummy implementations of the major services, processes and
workflows.

Section 2 introduces the global architecture of the platform and the definition of its main
component types, and presents an overview of the operational prototypes, discussing their role,
configuration, and development roadmap, showing in each case a sample output generated by
the component.

Section 3 contains a description of the demonstrator applications: the architecture integration
demonstration, the video-game authoring tool, and the architecture authoring tool.

Section 4 provides a walk-through of the structure of the code, to assist in the navigation of the
Subversion repository

Section 5 contains links and details for accessing the demonstrator application for reviewers.

Section 6 presents a brief summary and conclusions.

D6.3 – V1.0

Page 9

2 PROTOTYPE ARCHITECTURE

In the following chapter, we describe the global architecture of the V4Design platform,
discussing its conceptual designs, components, and integration model.

The global architecture is introduced in section 2.1 starting by its conceptual design, then a
generic definition of a V4Design service is discussed to illustrate the standardization of these
components, which in turn are grouped in three tiers according to their role and integration in
the platform cycle. We discuss how the platform communication model chains these services
communication to implement this cycle, and the input/output model to illustrate how data is
processed and created.

In section 2.2, we discuss the service prototypes, including concepts, technical requirements
and development plans, and show sample output examples to illustrate the added value of each
service.

In section 2.3, we discuss the platform middleware components, elaborating on their
implementation, configuration, functionalities, and performance.

In section 2.4, we discuss the platform’s authoring tools for video games and architecture,
including their user profile and user data management policies, and the related model
derivatives database.

In section 2.5 we discuss the content extraction pipeline of the platform, by which raw data is
extracted from data sources, and used to create the assets envisioned in V4Design.

2.1 Global Architecture

The architecture model chosen for the V4Design platform is that of a distributed processing-
oriented architecture. Accordingly, each of the services conceived for the platform can be
hosted and managed independently from the others, and services communicate via the
platform’s message bus and share middleware components such as the data storage and
retrieval system, and the platform API component.

Each component of the architecture is a self-contained unit with its own connector, queue, local
storage, and processing policy. When it comes online, it notifies the message bus of its
availability, and starts receiving messages from other services whose processing results proceed
and are required by the component. When notified, the service retrieves the related data from
the platform’s data storage and retrieval system, processes it, and then stores the results back
on the data storage and retrieval.

The platform architecture is designed in a manner that enforces a separation of concerns
among its different layers and components. From a high-level perspective, the interactive
components, otherwise referred to as the user tools, are segregated from the processing
components that are designed to process data efficiently and autonomously. The two sets are
connected via the platform’s API, which allows communication to be established among the two
sets in an orderly fashion. The interactive components are responsible for managing users,
servicing their requests, and storing user-related data, while the processing components are

D6.3 – V1.0

Page 10

responsible for storing raw data and processing it to generated high-end assets of relevance to
the designated user profiles. The communication among both sets allows to retrieve data from
the platform storage, and to channel occasional user petitions that launch specific processing
components explicitly.

In concrete, the platform’s front-end side is composed of two tools that are developed in the
course of the project: the Rhino3D tool and the authoring tool for virtual reality. These tools
communicate with an API designed to channel their data request to the platform back-end. The
API also facilitates the sharing of data, or more precisely user data, among the tools. It acts as
the platform's back-end interface with the user tools, and consequently can execute data
queries and retrieve data directly from the platforms data storage and retrieval system. In
addition, the API can send requests to specific services as messages through the message bus.
The platform’s message bus standardizes and supports communication among all of the
platform’s components. The data storage and retrieval system groups all of the platforms data
storing and servicing modules, implements the platforms data management policy, allowing the
platforms modules to exchange data and to rely a consistent and high performing storage
solution for the assets extracted and generated by the platform. Finally, the platform’s services
provide the functionalities required to support the platform’s data transformation process,
which implements the different algorithms and mechanisms conceived for the project. These
services are explained in detail in the following sections. The following Figure 2 shows the
conceptual design of the platform’s architecture.

Figure 2: Conceptual design of the platform’s architecture

D6.3 – V1.0

Page 11

The platform services are designed and implemented according to a generic definition of a
V4Design service devised to illustrate the technical and functional requirements that each
service needs to meet in order to integrate seamlessly in the platform’s ecosystem.

According to this design, a service comprises several technical modules, each performing a
specific role. In order to communicate with the rest of the platform’s modules and components,
a service has two interface mechanisms: first is the message coder and decoder module, which
establishes communication with the message bus by sending and receiving messages; and
second is the data IO module, which establishes data exchange with the data storage and
retrieval system through GET and POST requests. A service must have an authentication
mechanism allowing the message bus to identify and trust this service before sending and
receiving messages. in addition, a service could have a Queue to store incoming messages if
needed. The service core implements the algorithm or the mechanism that the service is
created to provide. It generates the service output, which is relevant to other services and/or to
the user. Finally, the service could have a local storage module that is used to store local data,
or data that is not relevant to any other service or component in the platform.

This conceptual design which provides a generic definition of a V4Design service, is shown in the
following Figure 3.

Figure 3: Generic definition of a V4Design service

The platform services can be grouped into three tiers according to their position in the process
executed on the acquired data, and the role each performs.

Tier 1 services are basic extraction and data transformation services that operate on the raw
data ingested in the system and generate essential elements for other services. These services
are not directly related to the platform users operating the tools, who are interested in assets
that are more elaborate than those generated by Tier 1 services.

D6.3 – V1.0

Page 12

Tier 2 services are designed to generated user-oriented assets, such as reconstructed 3D
models, short descriptions, and extracted textures and aesthetics. Tier 2 services require the
output generated by Tier 1 services to perform their tasks, and therefore are chained after Tier
1 services.

Finally, Tier 3 services centre on generating intelligence geared to facilitating the user tasks
related to asset foraging, asset discovery, and asset compatibility assessment, among others.
Tier 3 services are mainly concerned with Tier 2 output but can also utilize the output of Tier 1
services.

This is illustrated in the following Figure 4.

Figure 4: Generic definition of a V4Design service

These three tiers represent a conceptual template that governs the platform processing cycle,
by which newly ingested assets are processed to empower users to find and re-use multimedia
assets. This cycle chains Tier 1, Tier 2, and Tier 3 services sequentially in the processing of a
single asset.

The platform cycle starts when new data arrives to the system. This data is retrieved via the
crawler or the wrapper, which send a “New Data” message, announcing the arrival of new raw
data to process. Tier 1 services retrieve this data sequentially and process it item per item in
parallel. When a Tier 1 service finalizes and produces an output, it sends a message to the
concerned Tier 2 services, for instance when the Language Analysis services extract text
descriptors and other semantic knowledge, it sends a “Text Analysed” message to the Language
Generation, which in turn retrieves the data (original data, and the output generated by
Language Analysis), and processes it.

When a Tier 2 service finalizes the processing of an item and produces a result, it sends a
message to Tier 3’s Knowledge Base, which monitors and structures the knowledge generated

D6.3 – V1.0

Page 13

around processed assets and finalizes the platform cycle for each of these assets. A
complementary platform cycle is invoked by the API when a request for texture extraction is
sent by the user. This runs the platform’s cycle starting from Texture Proposals instead of the
Crawler or Wrapper, and only executes it partially.

This is explained in detail in the following Figure 5.

Figure 5: The platform communication model

From a data management perspective, each service extracts its input from the data storage and
retrieval system and then pushes its output on the same component. Most of the services read
a single asset at a time, but some can read an array of assets if necessary, for instance in the
case of the 3D reconstruction service that requires large collections of images in order to
perform its tasks. Each service generates a specific output which is then hosted on the data
storage and retrieval system according to its type.

All services are triggered by the availability of corresponding data, which is communicated
through messages containing, not only information about the status of proceeding processes
but also identifiers of the related data objects and assets. This allows the service to retrieve the
data for processing without having to query the data storage and retrieval system.

This is illustrated in the following Figure 6.

D6.3 – V1.0

Page 14

Figure 6: The platform input/output model

This description of the platform architecture details its design and integration approach, which
takes into consideration the requirements in terms of maturity level that the platform has to
reach by the end of the project, and the possibility to add new services and tools to expand the
platform in the future. In addition, this approach concerns such as security, scalability and
performance.

In the context of the operational prototype, or the first integrated version of the platform, the
design and integration approach of the platform architecture acts as guidelines for the
developers of the architectural components of V4Design, especially the services.

2.2 Service prototypes and their development roadmaps

In the following section we present the V4Design service prototypes, each described according
to its function and technical requirements. The development roadmap envisioned for each
service and primarily described in D6.1 is revisited and updated according to the current state of
development and the progress achieved in the project.

2.2.1 The Language Analysis

The Language Analysis module captures and analyses the textual information associated with a
retrieved asset and creates structured ontological representations. It combines multilingual
dependency parsers and lexical resources, and a projection of the extracted dependency-based
linguistic representations into ontological ones.

The technical requirements that this service aims to fulfil are summarized in the following table.

D6.3 – V1.0

Page 15

Table 1: Corresponding functional requirements

TR NB Description Function Function performed

TR_LA_1 Extract knowledge from textual data
to be able to map it to the KB

Linguistic
Analysis

Tokenization, Part-of-
speech tagging,
Lemmatization, Surface-
syntactic parsing.

TR_LA_2 Extract knowledge from textual data
to be able to map it to the KB

Concept
extraction

Word Sense
Disambiguation, Entity
linking.

TR_LA_3 Extract knowledge from textual data
to be able to map it to the KB

Relation
Extraction

Deep-syntactic parsing,
Conceptual relation
extraction.

The Language Analysis pipeline comprises the following modules: tokenization (TR_LA_1), PoS
tagging (TR_LA_1), lemmatization (TR_LA_1), word sense disambiguation (TR_LA_2), entity
linking (TR_LA_2), concept extraction (TR_LA_2), surface syntactic parsing (TR_LA_3), semantic
parsing (TR_LA_3) and conceptual relation extraction (TR_LA_3).

When new textual content has been crawled/scraped, the Language Analysis pipeline receives a
message and starts processing the document(s) in the following order:

- Concept extraction, entity linking and disambiguation;
- PoS tagging, lemmatization, morphological analysis and Syntactic parsing;
- Semantic parsing;
- Conceptual relation extraction;

The output generated by Language Analysis for the following input text:

“It is recognised by UNESCO as a World Heritage Site.”

Table 2: Output example of Language Analysis

JSON file
"UNESCO_1" : {
 "sameAs" : *"http://dbpedia.org/page/UNESCO”+,
 “organization": "true"
},
"World_Heritage_Site_1" : {
"type" : *“http://dbpedia.org/ontology/WorldHeritageSite”+,
},
"Delphi_1" : {
"sameAs" : *“http://dbpedia.org/page/Delphi”+,
“Type” : *“http://dbpedia.org/ontology/Place”, “yago:Sanctuary”+,
 "location": "true"
},

D6.3 – V1.0

Page 16

"recognize_1" : {
 "type" : *“http://conceptnet.io/c/en/recognize”+,
 "properties" : {
 "involvesAgent" : ["UNESCO_1"],
 "involvesPatient" : ["Delphi_1"],
 "involvesCoPatient" : ["World_Heritage_Site_1"]
 }
}

The roadmap is the same as described in D6.1:

V1 [M12]: Operational prototype. The language analysis pipeline will be able to output
language-independent representations starting at least from English, for a limited set of input
sentences. V1 is particularly focused on all TR_LA_1 and TR_LA_3 modules, and on the concept
extraction module of TR_LA_2.

V2 [M16]: Basic version of multilingual language analysis. The analysis pipeline will be
operational for at least three languages, and its coverage will be improved according to the
specifications of the different UCs. The quality of the outputs will be evaluated.

V3 [M34]: Final version of multilingual language analysis. The analysis pipeline will have an
improved coverage and will be able to handle all the V4Design languages (English, Spanish,
Greek, and German). Efforts will be dedicated to ensure the reusability of the developed tools
outside of V4Design.

In the following we discuss the current status of this prototype.

Surface-syntactic analysis:

● Current language: English

● Next languages (ready, to be integrated): Spanish and Greek

● Current formalism: Penn Treebank style

● Alternative formalism (ready, to be integrated): Universal dependencies.

● Tools and resources used: off-the-shelf dependency parser and Penn Treebank corpus

D6.3 – V1.0

Page 17

Figure 7: Surface-semantic analysis configuration

Semantic analysis

● Current language: English

● Next language: Spanish (ready, to be integrated) and Greek (to be developed)

● Current formalism: Meaning-Text Theory

● Alternative formalism (ready, to be integrated): Universal Dependency-based deep

structures

● Current level of abstraction: Deep Syntax - language-specific

● Next target for level of abstraction: Conceptual - language-independent (under

development)

● Tool and resources used: UPF graph-transduction grammars and lexical resources

D6.3 – V1.0

Page 18

Figure 8: Semantic analysis configuration

Word Sense Disambiguation (part of concept extraction)

● Current language: English

● Next languages (ready, to be integrated): Spanish, Greek, German

● Current resources used: BabelNet, Wikipedia, WordNet

● Currently evaluating various approaches (baseline and experimental) fed with our

candidate detection (see below).

Figure 9: Word Sense Disambiguation configuration

Entity linking (part of concept extraction)

● Current language: English

● Next language (ready, to be integrated): Spanish

● Current resource used: DBpedia

● Currently using off-the-shelf DBpedia Spotlight fed with our candidate detection (see

below)

D6.3 – V1.0

Page 19

Figure 10: Entity linking configuration

Concept candidate detection (part of concept extraction)

● Current language: English

● Next language (under development): Spanish

● Current issues: slow (V0.1)

Figure 11: Concept candidate detection configuration

2.2.2 The Language Generation

The language generation module is in charge of generating textual reports, descriptions, or
summaries, starting from data extracted from text, webpages, and/or visual analytics. It
generates a summary of most relevant contents related to a specific keyword and/or entity.

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 3: Corresponding functional requirements

TR NB Description Function Function performed

TR_LG_1 Select content to be generated as
texts and shown to the users.

Text Planning Identify contents related to
the queried entity, assesses
their relevance relative to
this entity.

TR_LG_2 Render the selected content as
text.

Linguistic
Generation

Generates text in target
language.

D6.3 – V1.0

Page 20

The Language Generation pipeline comprises the following modules: content selection
(TR_LG_1), lexicalization (TR_LG_2), sentence structuring (TR_LG_2), morphological agreements
resolution (TR_LG_2), and word order resolution (TR_LG_2).

When the reasoning module is done processing new visual and/or textual contents, the
resulting information is sent to the Language Generation module that performs the following
actions:

- Selection of the content to be verbalized;
- Lexicalization and sentence structuring in the target language;
- Resolution of word order and morphological agreements.

The Language Generation module uses the abstract representation generated by Language
Analysis to create meaningful descriptions, for example (using the output example of Language
Analysis): “UNESCO recognizes Delphi as a World Heritage Site”.

The roadmap is the same as described in D6.1:

V1 [M12]: Operational prototype. Generation of a few sentences from ontological
representations will be supported in English. Some basic summarization techniques (e.g.
extractive summarization) will be implemented for handling possible textual inputs. V1
particularly focuses on the TR_LG_2 modules

V2 [M18]: Basic summarization techniques. The generator starting from ontological structures
will be adapted to one or two more languages, and its coverage will be increased (all depending
on the UC requirements). A first version of the ontology-based text planning will be setup and
connected with the generator.

V3 [M33]: Final summarization techniques. The ontological generator will handle all V4Design
languages (English, Spanish, Greek, and German) and cover all defined use cases, and will
include statistical submodules when needed. The advanced version of the text planning module
will be released, which will aim at optimizing the relevance and coherence of the summaries.
Efforts will be dedicated to ensure the reusability of the developed tools outside of V4Design.

In the following we discuss the current status of this prototype. No online demo is available so
far, so we discuss the main successive steps followed during the generation process.

Input

Location (Berlin, Gendarmenmarkt)

Mapping to predicate-argument structure

D6.3 – V1.0

Page 21

Mapping to deep-syntactic structure (sentence structuring)

Mapping to surface-syntactic structure (introduction of functional elements and fine-grained

grammatical relations)

Linearization and introduction of punctuation signs

Resolution of morphological agreements

Surface form retrieval

2.2.3 The V4Design Crawler

The crawler service integrates all the crawling and scraping functionalities envisioned in the
project, in order to extract freely available textual and visual content from open web resources,
including from social media.

The technical requirements that this service aims to fulfil are summarized in the following table.

D6.3 – V1.0

Page 22

Table 4: Corresponding functional requirements

TR NB Description Function Function performed

TR_CR_1 Using a set of URLs as web entry
points, collect all the hyperlinked ULRs,
up to a predefined depth.

Web crawling Discovers nodes to scrape

TR_CR_2 Add more keywords to refine the
search operations.

Query
expansion

Discovery of extra keywords
relevant to the input query

TR_CR_3 With the help of API, search a web
application (e.g. Flickr) using textual
queries.

Web search Depending on the available
APIs, scraping may also be
performed

TR_CR_4 Extract assets from web pages Web scraping Extracts content from web
pages

TR_CR_5 Search and collect social media posts
relevant to a keyword or a user
account.

Social media
crawling &
scraping

Extracts content from social
media

TR_CR_6 looks at the FTP server folders of a
content provider to see if any new
content has been added, and if so
extracts it to add to data storage

FTP crawling extracts content from the
V4design FTP server

TR_CR_7 based on an EDM file or a generic JSON
file, check if this JSON is SIMMO-
compliant. If not, use predefined maps
to make this JSON file SIMMO
compliant. Send to data storage

data model
mapping

maps incoming data from
the incoming data model to
SIMMO JSON

TR_CR_8 Application of classifiers that
categorize the resources as
appropriate or not for our purposes

Resource
filtering

categorizing the resources
as appropriate or not for
our purposes

V4Design Crawler is the component that produces new data for the pipeline, based on
predefined web entry points and queries. The following figure describes how it works step-by-
step.

In a scenario where the crawler is searching Flickr for the query “Eiffel Tower”, the following

example illustrates the array of SIMMOs produced:

Table 5: Output example of the Crawler

[
 { "_id" : "f240773e-949a-4439-90d9-82a43d7dc201",
 "className" : "gr.iti.mklab.simmo.core.items.Image",
 "thumbnail" : "https://farm7.static.flickr.com/6220/6371213275_6936c0378c_t.jpg",
 "source" : "Flickr",

D6.3 – V1.0

Page 23

 "type" : "IMAGE",
 "url" : "https://flickr.com/photos/14443335@N06/6371213275",
 "title" : "Eiffel Tower_Wide-1",
 "tags" : ["paris", "eiffeltower"],
 "crawlDate" : ISODate("2018-11-07T14:39:44.749Z"),
 "searchQuery" : "eiffel tower" },
 { "_id" : "95607186-0c30-4ad8-9de0-735186b93f54",
 "className" : "gr.iti.mklab.simmo.core.items.Image",
 "thumbnail" : "https://farm3.static.flickr.com/2711/4480893837_37215b9db3_t.jpg",
 "source" : "Flickr",
 "type" : "IMAGE",
 "url" : "https://flickr.com/photos/47077636@N07/4480893837",
 "title" : "Eiffel Tower at Night",
 "tags" : ["paris", "eiffeltower", "france", "eiffel"],
 "crawlDate" : ISODate("2018-11-07T14:39:44.749Z"),
 "searchQuery" : "eiffel tower" },
….
 "crawlDate" : ISODate("2018-11-07T14:39:44.749Z"),
 "searchQuery" : "eiffel tower"
}]

The development roadmap for this service is described in the following:

Operational Prototype [M12]: includes the implementation of the Web crawling and scraping
component, the Social media search component, and the Web search component. This
prototype is integrated with the platform’s message bus.

1st Prototype [M18]: Implementation and integration of Query expansion and Resource
Filtering.

2nd prototype [M24]: Delivery of an advanced version of web/social media scraping and search.

Final Prototype [M30]: Update of all the components and finalization of the module.

In the following we show a screen capture of the Crawler interface.

D6.3 – V1.0

Page 24

Figure 12a, b: The V4Design Crawler interface

2.2.4 Aesthetics Extraction and Texture Proposals (AE&TP)

The Aesthetic Extraction (AE) and Texture Proposals (TP) service extracts and categorizes the
aesthetics of media assets that contain architecture objects and buildings based on their style

D6.3 – V1.0

Page 25

(i.e. impressionism, cubism and expressionism), creator and emotion that they evoke to the
viewer and combine them so as to produce/suggest novel textures

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 6: Corresponding functional requirements

TR NB Description Function Function performed

TR_AE_1 extract texture and style for images
and videos so as to be able to
retrieve patterns, textures and
styles

Aesthetics
extraction (AE)

Aesthetics extraction from
paintings, clustering, model
extraction and storing on a
local file storage

TR_TP_1 combine textures and styles to
propose them in the generation of
a new image

Texture
proposals (TP)

Transfer painting style from
the desired image or
aesthetic model and pass it
to the goal image

Initially, an offline process will run so as to build the initial AE models. For that purposes, AE
components will need to gather a great deal of annotated images that consist of renowned
paintings, buildings and architecture objects. These data will be crawled from the web and/or
compiling data from the content providers APIs and when enough images are compiled (>10K
batch size), the AE component will be notified by the message bus, retrieve these data and
build/update the aesthetics models. These models will be stored in V4Design server’s file
storage and will be used to define the aesthetics category of a building, object and painting that
will be acquired during the online process. Furthermore, the top 50 results of each category will
be depicted to the V4Design user through the V4Design interface. The user will be able to select
the desired painting style that he would like to transfer to his creation (3D model) and alter its
texture using the TP component, which will perform this process.

The Aesthetic module takes the following input as example: {Impressionism, Vincent Van Gogh,

painting}, Storage format: h5

D6.3 – V1.0

Page 26

The corresponding output will be:

Table 7: Output example of Aesthetic Extraction

Field name: style
Type: DCNN-model (.h5)
Allowed values: {Baroque, Impressionism, Expressionism, Cubism, Rococo, Minimalism,
Abstract Expressionism, Action painting, Analytical Cubism, Art Nouveau, Colour Field
Painting, Contemporary Realism, Early Renaissance, Fauvism, High Renaissance, Mannerism
Late Renaissance, Naive Art Primitivism, New Realism, Northern Renaissance, Pointillism, Pop
Art, Post Impressionism, Realism, Romanticism, Symbolism, Synthetic Cubism, Ukiyo-e}

Field name: creator
Type: DCNN-model (.h5)
Allowed values: { Salvador Dali, Vincent Van Gogh, Pablo Picasso,Albrecht Durer, Boris
Kustodiev, Camille Pissarro, Childe Hassam, Claude Monet, Edgar Degas, Eugene Boudin,
Gustave Dore, Ilya Repin, Ivan Aivazovsky, Ivan Shishkin, John Singer Sargent, Marc Chagall,
Martiros Saryan, Nicholas Roerich, Pierre Auguste Renoir, Pyotr Konchalovsky, Raphael
Kirchner, Rembrandt,Paul Cezanne,}

Field name: type
Type: string
Allowed values: {painting, building, object}

The Texture Proposal module takes the content and style images as input and produces the

following examples:

D6.3 – V1.0

Page 27

Table 8: Output example of Texture Proposal

The development roadmap for this service is described in the following:

Version 1 [M12]: 1st version of the basic aesthetics and texture proposals is released and
integrated with the platform and message bus.

Version 2 [M26]: The basic version of the algorithm integrated in V4Design system

Version 3 [M33]: Advanced version deployed.

In the following we show screen capture of the Aesthetics extraction service interface.

Figure 13: The Aesthetics Extraction interface

2.2.5 KB Population

The KB Population service is responsible for mapping the results generated by the different
V4Design services to the RDF-based representation format, based on the ontologies that will be

D6.3 – V1.0

Page 28

developed to provide the annotation models. This involves the development of vocabularies for
capturing texture and aesthetics, semantic relations (e.g. named entities, concepts and
relations), and various properties, such as artists, year etc., buildings, interior objects and other
content-specific attributes (e.g. landscapes, architectural styles, etc.). The underlying knowledge
structures will also provide all the necessary semantics needed to generate textual descriptions
and summaries for each asset.

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 9: Corresponding functional requirements

TR NB Description Function Function performed

TR_KB_1 Map analysis results from other modules Populate RDF mapping and KB
population

TR_KB_2 Provide an API over the KB for querying
metadata

Populate RDF mapping and KB
population

TR_KB_3 Map metadata about texture resolution Populate RDF mapping and KB
population

TR_KB_4 Map analysis results from building
localisation

Populate RDF mapping and KB
population

TR_KB_5 Map analysis results from object
localisation

Populate RDF mapping and KB
population

TR_KB_6 Map analysis results from aesthetics Populate RDF mapping and KB
population

TR_KB_7 Map analysis results from text analysis Populate RDF mapping and KB
population

TR_KB_8 Map analysis results from reasoning Populate RDF mapping and KB
population

TR_KB_9 Map metadata about quality Populate RDF mapping and KB
population

TR_KB_10 Map geo-location of assets Populate RDF mapping and KB
population

TR_KB_11 Map date (creation date) Populate RDF mapping and KB
population

TR_KB_12 Map author info Populate RDF mapping and KB
population

TR_KB_13 Map copyright info Populate RDF mapping and KB
population

TR_KB_14 Map visible colours Populate RDF mapping and KB
population

D6.3 – V1.0

Page 29

TR_KB_15 Map metadata coming from 3D model
reconstruction

Populate RDF mapping and KB
population

TR_KB_16 Map results from text generation Populate RDF mapping and KB
population

TR_KB_17 Ability to associate assets with relevant
external Web Pages

Populate RDF mapping and KB
population

TR_KB_18 Map results from text generation Populate RDF mapping and KB
population

TR_KB_19 Associate assets with preview thumbnails Populate RDF mapping and KB
population

TR_KB_20 Ability to map texture material metadata Populate RDF mapping and KB
population

TR_KB_21 Support the linking of assets with relevant
ones

Populate RDF mapping and KB
population

TR_KB_22 Support the annotation of assets with
reuse rights and copyrights

Populate RDF mapping and KB
population

TR_KB_23 Map analysis results from text generation Populate RDF mapping and KB
population

The service is triggered whenever some other module of the pipeline produces results. The
results are stored in the Data Storage by the module that generates them and publishes a
message informing other modules how to obtain the results. KB Population reads these
messages, retrieve the results from the data storage, generates the mapping (RDF triples) and
stores the results in the KB.

A Building localisation example output would be:

Table 10: Output example of KB Population

{ "simmo": "http://v4design-ds.com/simmo/<ref>",
 "assets": [{
 "type": "image",
 "original": "http://v4design-ds.com/file/<imageId>",
 "mask": "https://v4design-ds.com/file/<maskId>",
 "tags": ["tower"] }]
}

RDF mapping:

Table 11: RDF mapping of KB Population output

@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix v4d: <https://v4design.eu/ontologies/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

D6.3 – V1.0

Page 30

<https://v4design.eu/ontologies/simulation_v2#BuildingLocalisationAnnotation_1>
 a <https://v4design.eu/ontologies/BuildingLocalisationAnnotation> ;
 oa:hasBody <https://v4design.eu/ontologies/simulation_v2#LocalisationBuildingView_1> ;
 oa:hasTarget <https://v4design.eu/ontologies/Mask_1> .

<https://v4design.eu/ontologies/Mask_1>
 a <https://v4design.eu/ontologies/Mask> ;
 v4d:uri "https://v4design-ds.com/file/Mask_1" .

v4d:simulation_v2#LocalisationBuildingView_1
 a v4d:LocalisationBuildingView ;
 v4d:originalImage v4d:Image_1 ;
 v4d:tag <https://babelnet.org/synset?word=bn:00077766n> .

<https://babelnet.org/synset?word=bn:00077766n> rdfs:label "tower" .
v4d:Image_1
 a v4d:Image ;
 v4d:simmoRef "http://v4design-ds.com/simmo/5ac38f1bca994aefd5f3e6be" ;
 v4d:uri "http://v4design-ds.com/file/Image_1" .

The development roadmap for this service is described in the following:

Operational prototype [M12]: Basic mapping functionality will be available towards v1. This
involves the delivery of the mapping algorithms able to populate the KB with real results
generated by the current version of the V4Design components. The interaction with the bus will
be also implemented and tested, aligning the subscription mechanisms to the events published
by the analysis modules.

V1 [M20]: Fully fledged mapping service, supporting the full structure and content of the
outputs generated by the V4Design modules for v1. The mapping algorithms in M20 will extend
the ones developed in M12, taking into account updates and refinements made in the V4Design
modules to address the technical and user requirements.

V2 [M28]: Necessary updates for v2, in line with the updated structure and content provided by
the analysis modules. This involves the update of the mapping algorithms to support the richer
inputs that will be provided by the components, as well as to update the publishing and
subscription mechanisms to the bus in order to realise the communication with the other
modules of the framework. Special focus will be given on the semantic enrichment of the
incoming information, e.g. by including additional references to Linked Data resources.

V3 [M36]: Necessary improvements on the final system, according to the updates made on the
output (structure and content) provided by the other components. In the final version the focus
will be also given on the scalability of the mapping algorithms, as well as on developing fall-back
strategies when the incoming information is incomplete. The possibility of a tighter interaction
with the Reasoning service will be also investigated, according to the need to incorporate some

D6.3 – V1.0

Page 31

sort of reasoning in the mapping process (this depends on the semantics of the input that will
be provided).

Operational prototype demo

In order to test the KB Population module, we have developed a demo page that performs on
the fly transformation of various V4Design modules into the V4Design Annotation Metamodel
described in D5.1. As depicted in Figure 14, all four V4Design modules are supported. When the
user selects a module, an example output is shown (Figure 15) and by clicking on the Convert
button, the results of the mapping is shown. Figure 16 depicts the results by selecting the
Aesthetics module. At the same time, the RDF triple store is populated with the results of the
mapping. In Figure 17, the RDF graph semantically annotates image1 with the BabelNet
“minimalism” resource (https://babelnet.org/synset?word=bn:00055162n), linking
V4Design Knowledge Base with the BabelNet semantic network.

Figure 14: Home page for the KB Population demo

D6.3 – V1.0

Page 32

Figure 15: Example output of the Aesthetics module

Figure 16: RDF mapping results of Aesthetics output

D6.3 – V1.0

Page 33

Figure 17: RDF visual graph of Aesthetics mapping

2.2.6 Reasoning

The reasoning service builds a unified representation of the available assets, taking into account
information relevant to texture and aesthetics, named entities, concepts and relations extracted
from textual analysis, as well as buildings, interior objects and other content-specific attributes.
The component will be also responsible for query formulation, i.e. the translation of interface
requests into one or more queries to the backend data storage infrastructure in order to
retrieve and send back results.

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 12: Corresponding functional requirements

TR NB Description Function Function performed

TR_RQ_1 Support searching functionality
(translation of user requests into
one or more queries over the
data storage

Reasoning
Service

query formulation /
enrichment

TR_RQ_2 Infer geolocation from location
tag

Reasoning
Service

Inference of implicit relations
and context

D6.3 – V1.0

Page 34

TR_RQ_3 Propagate annotations from
other modalities to the 3D
models

Reasoning
Service

Inference of implicit relations
and context

TR_RQ_4 Find relevant external Web
page, based on the annotation
provided by other components

Reasoning
Service

Inference of implicit relations
and context

TR_RQ_5 couple searching functionality
with text analysis on the
keywords

Reasoning
Service

query formulation /
enrichment

TR_RQ_6 Find assets relevant to other
assets

Reasoning
Service

Inference of implicit relations
and context

Example rule for the Reasoning service:

An example output:

Table 13: Output example of Reasoning

] a :_3DmodelView;
 :tag <https://babelnet.org/synset?word=bn:00013722n>.

The development roadmap for this service is described in the following:

The service is triggered whenever results are stored in the KB. Therefore, it listens to published
by KB Population.

Operational [M12]: Basic reasoning functionality will be available towards V1. This involves the
development of the rule-based reasoning framework able to combine existing tags and
generate high-level concepts, semantically enriching the captured context.

V1 [M20]: Reasoning functionality aiming to address the V1 requirements. This involves the
extension of the reasoning framework developed in M12 with advanced multimodal
information fusion and content aggregation techniques to generate higher level

D6.3 – V1.0

Page 35

conceptualizations for content repurposing. A hybrid reasoning scheme of Description Logics
and rule-based reasoning will be investigated.

V2 [M28]: Necessary updates for V2, based on the evaluation of V1 and the new input provided
by the other modules. In addition, the reasoning framework will be further enriched with non-
monitoring capabilities, addressing challenges relevant to content disambiguation and handling
of conflicts, e.g. in the case when conflicting information is received from different modules.

V3 [M36]: Necessary updates for the final system. Improvements on the scalability will be
investigated, while similarity measures will be implemented for advanced Linked Data resource
linking and approximate reasoning (e.g. to define clusters of relevant assets).

Operational prototype demo

The demo page for KB population also contains the “Reasoning” tab that can be used to run
example rule on top of the V4Design Knowledge Base and get the inferred results (Figure 18).
More specifically, we use SPIN rules, i.e. SPARQL construct graph patterns, to implement
expressive reasoning rules, enabling property value propagation and instance generation (when
needed). The core idea is to associate each reasoning task with one or more SPARQL rules that
address specific reasoning requirements, e.g. to propagate aesthetics from images to the 3D
models. The rule that is currently supported is the one described in D5.1 (section 6.2.2) about
enriching 3D models with aesthetics annotations. In this example, we assume that the
knowledge base contains the mapping result of aesthetics and the mapping result of 3D model
reconstruction. The supported inference rule is used to propagate the aesthetics of images,
which have been used to reconstruct a 3D model, to the 3D object itself (Figure 19). The result
of the rule is stored in the RDF graph, semantically associating the output of the aesthetics
module with the 3D model annotations (Figure 20).

D6.3 – V1.0

Page 36

Figure 18: Example rule

Figure 19: Inferred triples

D6.3 – V1.0

Page 37

Figure 20: Materialised inferred relation in the V4Design graph

Queries can be defined to run over the V4Design Annotation Graph to get 3D models that match
certain properties. For example, the SPARQL query in Figure 21 returns all the 3D models that
have been annotated with the “minimalism” concept. It should be noted that by using resources
instead of simple keywords allows us to support more complex queries. For example, in
BabelNet the resource of “reductivism” has the same id with “minimalism”. Therefore, a search
from the user with the keyword “reductivism” would return the same 3D model, provided that
text analysis on the user input would be able to assign the same BabelNet resource to the
search parameter.

D6.3 – V1.0

Page 38

Figure 21: Example query

2.2.7 Spatio-Temporal Building and Object Localization (STBOL)

Spatio-Temporal building and object localization in images and video frames service detects
whether an image or video contains a building, object or a painting and then semantically
segments it in a spatio-temporally manner in order to localize the spatial elements of the
buildings (i.e. type of window, door, roof, decoration, facade, etc.) and the surrounding area.

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 14: Corresponding functional requirements

TR NB Description Function Function performed

TR_OL_1 provide locations of
buildings and objects in
an image or a video

BOL Scene recognition on the image or video frame:
- Define whether a video contains data of interest
(i.e. building, object) and define its location in the
video
- Define whether an image contains a building,
object, painting

D6.3 – V1.0

Page 39

TR_OL_2 provide binary masks of
the buildings and
objects which are
detected

STBOL Semantic segmentation on the provided image/
video:
- Segments the video in a spatio-temporal manner so
as to extract masks of interest
- Segments the image in a spatial manner to extract
the masks of interest

The end-user will give to the system images or videos and it will get masks of video frames with
tagged regions that include buildings, basic structural elements and building surroundings,
which will then be given to the 3D-reconstruction module so as to incorporate the extracted
tags to its 3D models. This is explained in the following diagram.

Figure 22: STBOL process diagram

An input example for the STBOL would be an image like the following:

D6.3 – V1.0

Page 40

The corresponding output:

Table 15: Output example of Object Localization

{tower}
Storage format: h5
Data schema:
{alley;amphitheater;apartment_building;aqueduct;arcade;arch;archaelogical_excavation;arch
ive;auditorium;balcony;barn;barndoor;bazaar;beach_house;boathouse;bridge;building_facad
e;bus_station;campus;castle;catacomb;cemetery;church;construction_site;corridor;dam;dep
artment_store;downtown;gas_station;general_store;gift_shop;harbor;hospital;hotel;house;i
ndustrial_area;inn;lighthouse;mansion;manufactured_home;mosque;motel;museum;natural
_history_museum;oast_house;palace;parking_lot;pavilion;playground;restaurant;schoolhous
e;stadium;supermarket;temple;tower;train_station;tree_house;wind_farm;windmill;yard}

Another Input example:

D6.3 – V1.0

Page 41

The corresponding output:

Table 16: Output example of Object Localization

{table, chair, etc.}
Type: DCNN-model (.h5)
Allowed values: {sofa; table; chair; lamp; mug; etc.}

The development roadmap for this service is described in the following:

Operational prototype [M12]: Initial version of the basic STBOL component is released and
integrated in the platform and message bus.

1st prototype [M20]: The basic version of the algorithm will be delivered and integrated in
V4Design system.

2nd prototype [M34]: Advanced version of STBOL component will be deployed.

In the following we show screen capture of the STBOL service interface.

D6.3 – V1.0

Page 42

2.2.8 3D Reconstruction

The 3D Reconstruction service converts of input video and image data into 3D point clouds and
meshes. Input data will be initially analysed to determine reconstruction suitability. The service
will distinguish data suitable for multi multiple-view reconstruction (preferred method) and
data suitable for single view reconstruction. The multiple-view reconstruction (MVR) pipeline
will be providing intermediate results.

The technical requirements that this service aims to fulfil are summarized in the following table.

Table 17: Corresponding functional requirements

TR NB Description Function Function performed

TR_3D_1 Extract and build a 3D model Reconstruct Build a 3D model from the
collection of images or video
frames

The 3D reconstruction module initially accepts data in the form of: 1) image batches and 2)
video data.
In case where input consists of video data:

1. Initial frame extraction will begin
2. (not mandatory to start reconstruction) send extracted frames to visual analysis /

localization tool for processing
3. Initiate reconstruction routine
4. If initial steps successful -> reconstruction possible. If not: further processing stops.
5. Preliminary reconstruction results may be made available in the form of a potree point-

cloud.
6. Meshing processing starts

In case where input data consists of image batch:
- Check previous reconstruction if any of the images were successfully used in one of them:
- Yes? Update old reconstruction: add new images
- No? Initiate reconstruction routine
- See step 4 in the video data process above

This is explained in the following diagram.

Figure 23: 3D Reconstruction process diagram

D6.3 – V1.0

Page 43

Currently for the Eiffel tower simulation example (see Crawler example), the following output

layout was determined:

Table 18: Output example of 3D Reconstruction

{
 "reconstructions": [{
 "reconstructionId": { "id": "string" },
 "reconstructionGroupId": { "id": "string" },
 "inputContent": [{ "sourceId": "string" }],
 "usedContent": [{ "sourceId": "string" }],
 "visualAnalysisTags": ["string"]
 }]
}

Only 3 images displayed (currently using random UUIDs):

{
 "reconstructions": [{
 "reconstructionId": { "id": " 984e4ec3-eadc-4483-af20-4a255e69ae0b" },
 "reconstructionGroupId": { "id": " 51c1b7f3-c66d-4adc-a922-738478f208b4" },
 "inputContent": [{ "sourceId": "f240773e-949a-4439-90d9-82a43d7dc201" },
 { "sourceId": "95607186-0c30-4ad8-9de0-735186b93f54" },
 { "sourceId": "00f77d86-3550-435f-a3c5-e8e7ab2e7eae " }],
 "usedContent": [{ "sourceId": "f240773e-949a-4439-90d9-82a43d7dc201" },
 { "sourceId": "95607186-0c30-4ad8-9de0-735186b93f54" },
 { "sourceId": "00f77d86-3550-435f-a3c5-e8e7ab2e7eae " }],
 "visualAnalysisTags": ["Tower"]
 }]
}

The development roadmap for this service is described in the following:

Prototype *M12+: Initial reconstruction pipeline can be initiated (‘multiview reconstruction’ in
the diagram above). Message bus component handles dummy messages (‘message bus io’).

First version [M18]: Further improvements on reconstruction pipeline: better frame extraction
(‘video analysis’). Further output formats may be requested & processed (model decimation for
example). Initial tests single view reconstruction on specific datasets.

Second version: *M24+: Enhancement and segmentation of reconstructions (‘BIM module’).
Reconstruction feasibility test. Initial acquisition of BIM objects.

Third version [M30]: Final enhancements and updates.

D6.3 – V1.0

Page 44

2.3 Middleware modules and their development roadmaps

The V4Design platform middleware is composed of three different modules, being the message
bus, the data storage and retrieval, and the API. Each performs a distinct role in supporting the
services and user tools. In this section we discuss each of these modules separately.

2.3.1 The V4Design Message Bus

The message bus was initially introduced in D6.1 as a solution for implementing the selected
architecture model. Accordingly, available off-the-shelf solutions for message bus were
evaluated and assessed with respect to the general requirements of the architecture, and it was
determined that an instance of Apache’s ActiveMQ is among the most suitable solutions.

The main functionalities implemented by the message bus are the following:

A) Routing messages between components -- available in V1

B) Monitoring and control of message routing -- available in V1

C) Sequencing and queuing of messages -- available in V2

D) Resolving competition between communicating components -- Available in V2

All services and architecture modules depend on the proper functioning of the message bus.
Messages are sent to the message bus through its open ports and are logged to keep track of
traffic. A duplicate architecture is envisioned for the final deployment environment, where
redundancy can be provided by using two message bus instances instead of one (see Figure 24).

Figure 25 shows the header structure of the messages sent through the message bus. A service
can correlate messages, implicitly ask for a reply, typify messages (currently not used), delay
and prioritise them, and control their scheduling and delivery. The message topics explained in
section 2.1 have been implemented and tested.

Figure 24: Redundant architecture of the message bus

D6.3 – V1.0

Page 45

Figure 25: Implemented messages and structure of the message header

Figure 26: API Interface of the V4Design message bus

2.3.2 V4Design REST API

The V4Design REST API provides the functionality necessary for front-end applications to query
and retrieve assets from the V4Design platform. The RESTful API provides specific calls to query
through any number of metadata fields, such as asset type (3D model or image), asset date,
asset quality, and any other relevant fields that would help to filter the available assets.

The front-end tools depend on this component to fulfil their usability. Basic functionality of the
front-end tools are also included in the protocols of the component which can already be used
by the Video Games Authoring tool and the Architecture Authoring tool.

The REST API will contain various functionalities:

1. User Authentication
2. User profiles

D6.3 – V1.0

Page 46

3. Comments, ratings by users on 3D models
4. Communication with message bus to get data

The backend of the REST API component of the platform will contain a database of the users to
maintain authentication, profiles and ratings of the 3D models. Generally, the following actions
may be performed:

1. User puts in an email and password for authentication using OAuth.
2. User authentication connects with the database management system sends the email/
username of the user. The Database Management replies with the password key of the user
incase found or “Not Fount” incase not found.
3. The Database Management checks the database for the Queries.
4. The session management creates a session key and sends it to the database to be saved.
5. The user is also sent the Session Key.
6. With 1., the user can ask for a specific assets or list of assets, the access management first
checks if the user has access to all the assets and filters them in case of a negative response (no)
7. The user is sent a proxy “URL” of internal “URI” of the asset.
8. The request Management sends the “URI”s for proxying using proxy management.
9. The request management sends messages to the Message bus to initiate commands and the
Database for getting the assets.
All the action (1-9) are explained in the figure below (Figure 27).

Figure 27: conceptual design of the API

D6.3 – V1.0

Page 47

2.3.3 Data Storage and Retrieval

The Data Storage and Retrieval is responsible for handling any data manipulation action that is
needed for the V4Design components. It receives requests from the components and either
connects to a folder containing static files or directs the request to a database API (e.g.
MongoDB API). The interactions made through the Data Storage module are outlined in the
following figure.

Figure 28: Interactions made through the Data Storage module

The data storage and retrieval system are actually composed of three different storages, each
specialized in a specific type of data. The first storage is called the SIMMO Database and hosts
the raw data or assets acquired by the crawler and the wrapper from external sources. The
second storage is the Knowledge Base where all the output or results generated by the different
services, except for the 3D Reconstruction service, are stored. The 3D objects generated by the
platform are stored in the third storage, which is conveniently called the 3D Database.
Therefore, in order to retrieve the data related to the processes that Services would like to
perform, it is sometimes necessary to execute more than one GET request, each on a specific
storage in the data storage and retrieval system. For instance, the Language Analysis service,
which only processes raw data, will get its data from the SIMMO Database, and will store its
output on the knowledge Base. Consequently, the Language Generation service will get the raw
data from the SIMMO Database, and the corresponding data generated by the Language
Analysis from the Knowledge Base. These three storages and the objects they host are
illustrated in the following figure.

D6.3 – V1.0

Page 48

Figure 29: The Data Storage and Retrieval: three storages and the objects they host.

The basic functionalities that will be implemented by the Data Storage and Retrieval module can
be summarized in the following manner:

Table 19: Functionalities implemented by the Data Storage and Retrieval

Function Description Function performed

Data push Data Storing Sending and storing of resource(s) to a target database.

Data update Data modification Change of an already existing resource in a target database.

Data pull Data retrieval Retrieval of resource(s) from a target database.

The development of the Data Storage and Retrieval module will follow the following roadmap:

- Operational prototype [M12]: Implementation of basic functionality.
- 1st prototype [M18]: Integration of all the developed database solutions into the Data

Storage.
- 2nd prototype [M24]: Update of the web methods to support more data manipulation

functions.
- Final prototype [M30]: Final updates and optimizations to the module.

In a scenario where we chose to retrieve a webpage from the SIMMO database using an id the
returned JSON is the one below (JSON format):

{
 "annotations": [{
 "metadata": { "Operator": "Cámara Municipal de Silves",
 "Type": "Castle",
 "Owner": "Portuguese Republic",
 "Built": "c. 201 BCE",
 "Coordinates": " 37°11′27.56″N 8°26′16.46″W ",
 "Materials": "Taipa, Silves Sandstone, Masonry, Wood",
 "Open to the public": "Public" }

D6.3 – V1.0

Page 49

 }],
 "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "url": "http://en.wikipedia.org/wiki/Castle_of_Silves",
 "crawlDate": 1541596601282,

"items": [{ "id": "11030bf0-4f0f-4baa-8119-8fd5b36c5764",
 "type": "TEXT",
 "parent": [{ "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "type": "gr.iti.mklab.simmo.core.documents.Webpage" }],
 "content": "The Castle of Silves is a castle in the civil parish of Silves in the municipality of Silves in the
Portuguese Algarve ... that includes foundations in dirt, a stone staircase (with a single on one flight),
a spacious living room with the remains of a vaulted ceiling, olive oil press and pesto.",
 "textType": "TXT" },
 { "id": "d323cfb6-ee4c-4c60-8282-8089a4c7ff12",
 "type": "TEXT",
 "parent": [{ "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "type": "gr.iti.mklab.simmo.core.documents.Webpage" }],
 "content": "<!doctype html>\n<html class=\"client-nojs\" lang=\"en\" dir=\"ltr\">\n <head> \n <meta
charset=\"UTF-8\"> \n <title>Castle of Silves - Wikipedia</title> ... </html>",
 "textType": "HTML" },
 { "id": "fffc053b-f0f6-47aa-897b-513a71a0a956",
 "url": "http://en.wikipedia.org/wiki/File:SanchoI-SilvesCastle.jpg",
 "type": "IMAGE",
 "parent": [{ "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "type": "gr.iti.mklab.simmo.core.documents.Webpage" }],
 "thumbnail": "//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/SanchoI-
SilvesCastle.jpg/235px-SanchoI-SilvesCastle.jpg",
 "alternateText": "A statute of Sancho I of Portugal whose forces, supported by an even stronger
Crusader army, conquered the citadel of Silves in 1189" },
 { "id": "c4363fde-c2c5-45a8-acb0-5e4d31af8e96",
 "url": "http://en.wikipedia.org/wiki/File:Castelo_de_Silves_(6113330514).jpg",
 "type": "IMAGE",
 "parent": [{ "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "type": "gr.iti.mklab.simmo.core.documents.Webpage" }],
 "thumbnail":
"//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Castelo_de_Silves_%286113330514%29.jp
g/235px-Castelo_de_Silves_%286113330514%29.jpg",
 "alternateText": "The imposing citadel as seen from below in the surrounding district of Silves" },
 { "id": "c0d3760b-b6ab-4ea3-b0b1-b60ccf6d03bb",
 "url": "http://en.wikipedia.org/wiki/File:Castelo_de_Silves.26-04-18.jpg",
 "type": "IMAGE",
 "parent": [{ "id": "203daa5e-dbef-44a0-92ab-3b46c600ea17",
 "type": "gr.iti.mklab.simmo.core.documents.Webpage" }],
 "thumbnail": "//upload.wikimedia.org/wikipedia/commons/thumb/7/78/Castelo_de_Silves.26-04-
18.jpg/250px-Castelo_de_Silves.26-04-18.jpg",
 "alternateText": "Panoramic view of Silves castle" }]
}

D6.3 – V1.0

Page 50

2.4 Content Extraction Pipeline

The content extraction pipeline in the process by which the platform extracts raw data from
data sources, and creates the assets envisioned in V4Design. It starts with the acquisition of new
data objects and ends with the user consumption of newly-created assets. This pipeline is the
primary process supported by the integrated architecture, and therefore the platform’s backend
(comprised of the services and middleware) is conceived and developed in a manner that
optimizes performance from this pipeline’s perspective.

In previous sections, we have discussed the platform data management policy according to
which a centralized data warehouse has been conceived and created. This warehouse, referred
to as Data Storage and Retrieval system, acts as a data hub for all the platform components.

First, the crawler acquires new data and stores it in the data storage and retrieval and
broadcasts a “new data” message through the message bus. The message contains the IDs of
the newly acquired data objects. The services can use these IDs to read the data directly from
the data storage and retrieval with a “get request”. Upon receiving this message, two services
being the Object Localization and the Language Analysis immediately retrieve the new data
objects and process them in parallel, storing their outputs in the data storage and retrieval.
Subsequently, tier 2 services retrieve the raw data objects alongside with the output of tier 1
services, and process them in parallel, similarly storing their outputs in the data storage and
retrieval. Then, the KB Population reads the output of Tier 2 services and update the reasoning
iteratively. At this point, after the completion of all the service processes, the data is ready to be
served to the user tools, which access it through query and get requests.

Figure 30: The platform’s content extraction pipeline

This pipeline has possibly more than one ramification, which will be evident in the next
development cycles and upon the user-driven evaluation of the first prototype of the platform.
One ramification relates to a user-driven request for texture extraction, or 3D reconstruction.
Pragmatically, such ramifications will be gradually eliminated and transferred to the tools,

D6.3 – V1.0

Page 51

liberating the platform’s backend from servicing user requests outside the realm of the content
extraction pipeline.

One such ramification is the user request for extracting a specific texture based on user-defined
parameters. During the second cycle of development, an attempt will be made to translate such
functionalities, which currently are supported via petitions through the message bus, to the user
tools.

D6.3 – V1.0

Page 52

3 PROTOTYPE APPLICATIONS

In this section, we introduce the visual demonstrations developed as part of the operational
prototype for the platform. First, we discuss the message system visualization, a simulation that
shows how the message bus implements the communication model of the platform and its
cycle. Then, we discuss the authoring tool for architect describing its main functionalities and
processes. Finally, we discuss the authoring tool for video games in a similar manner.

3.1 Message System Visualization

The V4Design message bus is the centre of its architecture, by which all modules connect to the
each other and synchronize their execution (a model previously referred to as the platform
cycle). Components connect to the message bus in an organized manner, ordered by a list of
predefined topics, each addressing a specific platform concern.

These topics are presented in the following table.

Table 20: Message topics for V4Design platform components

Topic ID Senders Receivers

DATA_AVAILABLE Crawler, Wrapper Language Analysis, Object Localization

TEXT_ANALYZED Language Analysis Language Generation

OBJECT_LOCALIZED Objected Localization Aesthetics, 3D Reconstruction

OBJECT_RECONSTRUCTED 3D Reconstruction KB Population

AESTHETICS_GENERATED Aesthetics KB Population

LANGUAGE_GENERATED Language generation KB Population

KB_FINISHED KB Population Reasoning

REASONING_FINISHED Reasoning None (at the moment)

TEXTURE_REQUESTED API Texture Proposals

TEXTURE_EXTRACTED Texture Proposals KB Population

In order to demonstrate and validate the proper functioning of the message bus, a simulation of
the platform cycle has been implemented. Apart from showcasing how the message bus
orchestrates the platform cycle, the simulation serves to analyse the current integration design,
and improve it in order to define the architecture of the upcoming first version of the platform.

Among the subjects currently evolving is the integration with the Data Storage and Retrieval
system, by which services and other components are asked to push and pull data directly onto
it, and not channel data storage and retrieval requests through the message bus. In addition,
the integration of Texture Proposals and 3D Reconstruction is deemed to change in the near
future because both components require special input configuration

D6.3 – V1.0

Page 53

Texture Proposals requires the user to delimit areas from which texture should be extracted.
One approach to follow would centre on adding intelligence to the module instead of invoking
user interaction and user-cantered decision making.

3D Reconstruction needs to identify sufficiently large sets of images representing a single object
in order to complete a 3D reconstruction of it. The current platform cycle and data management
process do not guarantee a fruitful output for the 3D Reconstruction, which cannot immediately
discern collection of images visualizing the same object. Different approaches for adapting the
platform data stream to the input requirements of 3D Reconstruction are currently being
considered, namely taking advantage of the semantic analysis components to identify related
visual content automatically.

The following figure shows the version of the platform cycle that the simulation currently
implements.

Figure 31: Platform communication model implemented by the demo

3.1.1 Description of the simulation

In order to implement the simulation, a communication client was developed in Java to connect
to the message bus, create topics, and send and receive messages. The client runs as a Java
servlet and can be deployed in any supporting web server. The client is composed of:

- A single producer of messages, able to send messages to any topic.
- A series of message consumers, each listening for a specific topic.

Apart from the client, a web simulation has been developed in HTML + JavaScript that launches
and controls the client servlet. The web simulation implements the platform cycle as designed,
starting by the arrival of new data, and ending with the generation of processed objects as
previously argued.

D6.3 – V1.0

Page 54

The web simulation offers flexibility in implementing and adjusting the cycle and can be
updated to reflect progress or to define a target model for the current version of the platform.

The interface of the simulation shows a diagram that visualizes how the V4Design architecture is
integrated, connecting each of its services through message communication. Messages are sent
and received by objects dynamically created to represent actual services. The user can interact
with a single service (e.g. shutting it down, restarting, sending message), or can launch entire
cycles to simulate specific cases.

The simulation actually sends and receives messages through the message bus, but currently
does not connect any data or metadata to these messages, a feature that could be
contemplated for its next version. Its interface visualizes the messages received upon reception,
both as integrally and conceptually via arrows shown on the diagram. A small delay is
programmed between the reception of a message and the emission of the corresponding
response in order to simulate the processing delay caused by running a service.

Figure 32: Interface of the simulation showing the cycle in motion.

3.1.2 Testing the message bus implementation

In order to proper monitor the functioning of the message bus and the exchange of messages,
the execution of the platform cycle by the simulation can be observed through the message bus
API interface as illustrated in the following figure. Tests show that the message bus is able to
accommodate the cycle execution comfortably, and that this process can scale further. Tests did
not yet address a continuous execution, which is a concern left for the next development cycle
of the V4Design platform.

D6.3 – V1.0

Page 55

Figure 33: The message bus API interface for message monitoring

3.2 Authoring tool for architects (V4D4Rhino)

3.2.1 Description

The Authoring Tool for Architects is developed as a portal to the V4Design Asset Repository.
Technically, this tool is developed as a plugin to the Rhinoceros 3D CAD and 3D modelling
application.

The authoring tool developed by MCNEEL will allow the various functionalities including the
following:

● The users will be able to directly import assets from the V4Design repository to the scene
in Rhinoceros 3D

● The users will be able to analyse and manipulate the models imported from the V4Design
Asset Repository

● The users will be able to create personalized asset libraries from the assets available in the
V4Design Asset Repository

D6.3 – V1.0

Page 56

3.2.2 User and Technical Requirements

The current state of the authoring tool for architects attempts to fulfil some of the basic user
requirements defined in deliverables D7.1 and D7.2, specifically, the requirements to be able to
retrieve assets from the V4Design Asset Repository as well as to add these assets into a 3d
modelling environment in order to be able to study and manipulate the 3d model. This
functionality is exposed through a simple user interface. In the future, the functionality of the
tool will be expanded to include search and filtering functionality and other enhancements
required to fulfil the user requirements.

3.2.3 Development Tools

V4D4Rhino has been developed as a plug-in to the Rhinoceros 3D (Rhino) application. Beyond
being a capable 3d modelling application, Rhino also comes with a host of APIs which 3rd party
developers can use to develop custom functionality for Rhino. These API come in different
programming languages (C++, .net C# and VB, Python, and VBScript), and are targeted to
developers with potentially different objectives. While the Python and VBScript APIs are mainly
for writing script extensions which are meant to be distributed as text files, the C++ and .net
APIs allow for developers to compile their source code to a Dynamic Link Library (DLL) for
distribution. By this DLL compilation mechanism that a developer can create a plug-in for Rhino
in the format of an .rhp file. The .rhp file format is simple a DLL with a different extension. This
format is understood by the Rhino application as the entry point for a Rhino plugin and contains
the appropriate functions to instruct the Rhino application on what to do with the source code
and any associated DLLs.

V4D4Rhino is currently being developed in the C# programming language through the .net API
available for Rhino called RhinoCommon [4]. This API was chosen due to relative ease of use and
widely available source code samples. The RhinoCommon API includes functionality for
authoring Rhino plug-ins, functionality to interact with the current open Rhino file, as well as
functionality to do geometry creation and operations, all of which are relevant to developing an
authoring tool for architecture and design which meets the UR and HLUR gathered in previous
deliverables D7.1 and D7.2.

The V4D4Rhino plug-in includes a user interface developed in ECMAScript (JavaScript), HTML 5,
and CSS facilitated by the Vue.js framework.

3.2.4 Development Plan

The development of the V4D4Rhino tool features will be as follows:

● D6.4 [M18]: Connect V4D4Rhino to the V4Design Asset Repository and rework the data
models to receive the actual metadata schemas generated by the V4Design back end.
Additionally, the UI will be updated to accommodate all of this data. Ideally at this point
the tool would address the user related data storage requirements, such as ‘liked’ assets,
user comments, and model derivatives.

● D6.5 [M26]: Incorporate feedback from D7.3 [M20] Evaluation of 1st prototype into the
tool. Address any user requirements which need to be integrated at this point.

D6.3 – V1.0

Page 57

● D6.6 [M34]: Incorporate feedback from D7.4 [M28] Evaluation of 2nd prototype into the
tool. Address any issues of tool distribution that might arise throughout the
development of the tool.

3.2.5 UI / UX

Currently under development is a tool which addresses the gathered user requirements for
architects and designers. The objective for this tool is for it to be integrated into existing CAD
applications where it can start to become part of architecture and design workflows.
Technically, the tool is developed as a plug-in or add-on to the existing CAD application
Rhinoceros 3D (Rhino) where it is presented to the user as a portal to the available assets in the
V4Design Asset Repository (Figure 34).

Figure 34: The V4D4Rhino plug-in Query Window within the Rhino3d application.

V4D4Rhino in its current development state exposes a query window for searching and filtering
the available assets in the V4Design Asset Repository as well as a library window for organizing
assets which might be of particular interest to the user. The query window currently allows for a
text-based search in addition to a tag-based search. In subsequent versions, more specific
search mechanisms will be implemented to further aid in filtering the results from the query.

D6.3 – V1.0

Page 58

Figure 35: Text and tag-based query fields in V4D4Rhino

Once a query has been performed, the user is presented with a list of results, each showing a
thumbnail of the asset, asset title, and some quick action buttons which allow the user to like,
bookmark, or share the asset. The user can get further information for the asset by clicking one
of the results. This opens an asset preview window which allows the user to view the details of
the asset, including any relevant descriptions, user comments, asset popularity, and asset
metadata (Figure 35).

D6.3 – V1.0

Page 59

Figure 36: Asset detail window.

The library window of the V4D4Rhino plug-in shows any assets bookmarked by the user. This
section could be further developed by creating user defined asset collections, where a user
could bookmark a group of assets for different functions. For example, a user might be
interested in retrieving assets for a specific project located in Athens, Greece. The user would
create an asset collection with the asset results from a relevant query. These assets could then
be differentiated from assets needed for other projects or concerns. Such collections could also
be useful in sharing assets in a collaborative project environment, where several users are
working together on a project.

D6.3 – V1.0

Page 60

Figure 37: V4D4Rhino asset library

Besides retrieving assets from a remote repository, the V4D4Rhino plugin allows the retrieved
models to be added to the Rhino modelling environment so that the user can then use the
available tools to further manipulate the model. This functionality is exposed currently in the
Asset Detail Window dialog via the “ADD TO MODEL” button. Once pressed, the asset 3D model
is retrieved and added to the Rhino modelling environment.

D6.3 – V1.0

Page 61

Figure 38: Model from remote repository added to Rhino.

Once the model has been retrieved and added to the Rhino modelling environment, users can
start to analyse or manipulate the model with all the tools available in Rhino. For example, it
might be of interest to an architect to study the interior of a retrieved asset to understand the
relationships between open space and structural supports. In this case, the architect would use
the “Clipping Plane” functionality in Rhino to occlude parts of the model and reveal the interior
spaces. An example of this can be seen in Figure 38.

D6.3 – V1.0

Page 62

Figure 39: Showing retrieved model interior via the ‘“Clipping Plane” functionality in Rhino.

3.2.6 Tool evaluation

V4D4Rhino will be evaluated during the specific deliverables defined for tool evaluation:

● D7.3: Evaluation of the 1st prototype and updated user requirements [M20]
● D7.4: Evaluation of the 2nd prototype [M28]
● D7.5: Final system evaluation [M36]

Additionally, MCNEEL will host a user event where the tool will be given to users to try and
evaluate.

Finally, MCNEEL will make the tool available via its distribution channels in order to allow to the
existing Rhino3D users to give feedback on the plugin functionality.

3.2.7 Tool exploitation (distribution, licensing, exploitation)

The V4D4Rhino source code is currently developed under the open source MIT license.
Compiled versions of the source code will also be released under the same license. These
releases will be made available to Rhino users via two main distribution channels:

1. food4rhino.com: A website where McNeel and 3rd party developers publish Rhino plugins
and resources.

2. Yak: A package manager (similar with Nuget.org or the Node Package Manager, npm)
which ships with Rhino. Yak is currently under development, but some functionality is
available in Rhino 6 (the current release). This package manager allows users to directly

D6.3 – V1.0

Page 63

search and install plugins from within Rhino, without having to go to a website like
food4rhino.

Furthermore, the tool will be promoted via MCNEEL communication channels, including the
company blog, domain specific email newsletters, and events.

3.3 Authoring tool for video games

3.3.1 Description

The authoring tool for video game developers is developed in order to facilitate game
development procedure for people with preliminary knowledge of game development. The
authoring tool plans to work on top of the Unity3D [3] game engine where users can create a
basic environment using both the assets provided by V4design asset store and external assets.

The authoring tool developed by NURO will allow the various functionalities including the
following:

● The users will be able to directly import assets from the V4Design repository to the scene
in Unity3D.

● The users will be able to edit the environments in VR using the authoring tool
● The users will be able to add questions to assets where the player of the game will have to

answer the question to pass the asset in the game
● Import textures from the assets of V4design repository

3.3.2 User and Technical Requirements

The current version of the Authoring tool fulfils a great deal of the user and technical
requirements stated in D6.2. The basic requirements fulfilled includes the ability to search,
browse and import 3D models from V4Design repository into a scene of Unity3D, the ability to
modify the asset, see a preview of the asset, see the metadata related to the asset, import a 3D
Model into an environment in real-time while in Virtual Reality and export assets.

3.3.3 Development Tools

NuroAuthoringTool is being developed as a plug-in to Unity3D game engine. A game engine
provides developers ability to easily create game. It is a software development environment
specifically for creating video games. Unity3D provides game developers perfect rendering
engine, physics engine, collision detection, scripting and other tools for development of games.

Plugins for Unity3D can be written using C# through .NET for managed plugins and can be added
to the engine as a .dll file.

The NuroAuthoringTool can be used directly in VR to create, modify environments. To get assets
directly into a VR environment using an API, the 3D models have to be wrapped as a unity3D file
extension for the importing on the go. Currently the authoring tool uses static assets from the
system to showcase in the VR editor for adding and modifying.

D6.3 – V1.0

Page 64

3.3.4 Development Plan

The development of the NuroAuthoringTool features will be as follows:

● D6.4 [M18]: Connect NuroAuthoringTool to the V4Design Asset Repository and rework the
data models to receive the actual metadata schemas generated by the V4Design back
end. Additionally, the UI will be updated to accommodate all of this data. The tool will
include version 1 of all the necessary functionalities.

● D6.5 [M26]: Incorporate feedback from D7.3 [M20] Evaluation of 1st prototype into the
tool. Address any new or updated user requirements which need to be integrated at this
point.

● D6.6 [M34]: Incorporate feedback from D7.4 [M28] Evaluation of 2nd prototype into the
tool. Address any issues of tool distribution that might arise throughout the
development of the tool.

3.3.5 UI / UX

The UI/UX design was designed with keeping in mind the user requirements, usability guidelines
and experience of NURO in designing user interfaces. Figure 40 represents the initial mock-ups
designed and presented for the partners to get an perspective on the implementation plans and
comment on features they would like to be implemented or not.

Figure 40: Initial Mock-up of the tool.

Following the initial mock-ups and the comments from the partners, an initial version was
deployed with static data. The Figure 41 represents the first version of the NuroAuthoringTool
with various display previews of the assets.

D6.3 – V1.0

Page 65

Figure 41: Initial Mock-up of the tool.

Figure 42 represents the UI of the tool when an asset is chosen. Various aspects are shown
about the asset with the ability to bring it in to the scene while in the development mode of
unity. The user can get more information and, in the future, would be able to trigger certain
actions in the backend such as extracting textures.

Figure 42: Initial Mock-up of the tool.

D6.3 – V1.0

Page 66

Figure 43 represents the current UI with the ability to drag and drop assets inside the VR
environment where the users can change the environment in real time in VR. The users can
scale the assets, change their positions and delete them as well.

Figure 43: Example of scaling

3.3.6 Tool evaluation

The NuroAuthoringTool will be evaluated during the specific deliverables defined for tool
evaluation:

● D7.3: Evaluation of the 1st prototype and updated user requirements [M20]
● D7.4: Evaluation of the 2nd prototype [M28]
● D7.5: Final system evaluation [M36]

Apart from this, in 2019 we plan to organise a workshop for game enthusiasts and developers to
show the tool, have them use it how they like and evaluate and provide feedback.

The tool will also be tested by user groups of V4design, internally at NURO and DW as the users
of the tool. These evaluations will be considered continuously, and feedback will be integrated.

3.3.7 Tool exploitation (distribution, licensing, exploitation)

NURO plans to exploit the tool under Apache v2.0 License. The tool will be added to NURO’s
portfolio of tools and services for various markets. The marketing department of NURO plans to
reach out to potential game development companies and other customer cohorts to sell the
tool.

The exploitation will take place in multiple stages based on the progress of the tool, firstly
information about the tool will be disseminated to the relevant stakeholders, version 1 of the
tool would give the stakeholders a demo into its capabilities will be a teaser for exploitation.

D6.3 – V1.0

Page 67

Lastly, the full version of the tool will be given as a demo and then can be bought by
stakeholders if needed. The final exploitation plan will be based on the market analysis, user
requirements and pricing strategy.

3.4 Web Platform (API Interface)

The web platform will act as an asset store for the assets extracted by the V4Design platform.
The user can download, rate and comment on the 3D models. This will provide the V4design
REST API a web interface.

The web platform will be written using HTML, CSS, JavaScript and angular JS. The component
will be available for the mass, more generalised market rather than the specialised markets the
NURO authoring and the V4D4Rhino tools plan to target to explore V4Design assets and
capabilities of the system.

D6.3 – V1.0

Page 68

4 CODE ORGANIZATION

The V4Design platform is a distributed system composed of heterogeneous modules, each
developed under its own specifications and proper development framework. Due to its
complexity, the platform cannot be easily compiled and published as a single solution. Although
this is technically possible, making such an integrated product may lie outside the scope of
V4Design, as it entails efforts for product development and consolidation that are generally
addressed beyond TRL7 maturity level, such as enterprise integration and enterprise packaging.

In order to effectively organize the sharing of code and the publishing of solutions, both in-
house and public, the following approach has been adopted.

The packaging and publishing of V4Design modules can vary according to the development
technology and deployment environment of each, and no unified approach will be devised. A
code repository that groups all the code components will be provided and used to share codes
among the partners. Open-source modules can have their code published to the public in
coordination with the consortium.

Modules (both as compiled solutions and as code) are published according to their type, and the
following three different types have been identified.

Complex modules that are composed of several integrated components, often customized to
befit a particular configuration, can be published as “Docker Images” *5+, facilitating their
deployment by third parties. Docker images encapsulate the entire module with its integrated
components and underlying dependencies in a manner that allows easy redeployment in other
environment, similarly to migrating virtual machines. Docker images can encapsulate databases
and specific server configuration files and setup programs, making it an easy and effective
option for publishing integrated modules. In addition to the docker instance, a copy of the
source code is also published allowing third parties to modify and build on top of the existing
modules.

Simple modules (e.g. packaged programs and algorithms) can be published as source-code
alongside their compilation and execution instructions. The deployment of such simple module
depends on specifications determined by their development environments (e.g. Java programs
can be deployed as Java Servlets or Python programs can be executed as background
algorithm).

Modules derived from open-source solutions are not published unless they have been changed
or altered in a manner that diverts them from their developers’ product tree. Their
configuration, deployment and integration within the V4Design platform can be published to
facilitate the platform’s complete deployment and integration by third parties.

4.1 Source tree layout

In order to house the codes of the different modules and make them available for other
partners in the consortium to consult, a GitLab repository account has been created for the
project. This account allows partners to publish code securely, and control access to it (privately

D6.3 – V1.0

Page 69

shared or public). Each service, middleware module, and tool have its code hosted on this
repository. This is explained in the following table and depicted in Figure 44.

Table 21: Licensing and distribution of V4Design modules

Module Policy Code repository License

Language Analysis Public V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d-text/v4d-text-
integration

Most likely license: Apache
Licence v2.0. Possible
different license for third-
party components.

Language Generation Public V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d-text/generation-
grammars

Most likely license: Apache
Licence v2.0. Possible
different license for third-
party components.

V4D Crawler Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d_crawler

Apache Licence v2.0

Aesthetics Extraction Protected V4Design code repository
https://gitlab.com/v4desig
nEU/v4design-aesthetics

Apache Licence v2.0

Texture Proposals Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4design-tp

Apache Licence v2.0

KB Population Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/kb-and-
reasoning/demo-
2018/jsontordfmapping

Apache Licence v2.0

Reasoning Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/kb-and-
reasoning/demo-
2018/converttordf

Apache Licence v2.0

Object Localization Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4design-stbol

Apache Licence v2.0

3D Reconstruction Protected V4Design code repository: TBD

https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/generation-grammars
https://gitlab.com/v4designEU/v4d-text/generation-grammars
https://gitlab.com/v4designEU/v4d-text/generation-grammars
https://gitlab.com/v4designEU/v4d_crawler
https://gitlab.com/v4designEU/v4d_crawler
https://gitlab.com/v4designEU/v4design-aesthetics
https://gitlab.com/v4designEU/v4design-aesthetics
https://gitlab.com/v4designEU/v4design-tp
https://gitlab.com/v4designEU/v4design-tp
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/jsontordfmapping
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/jsontordfmapping
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/jsontordfmapping
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/jsontordfmapping
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/converttordf
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/converttordf
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/converttordf
https://gitlab.com/v4designEU/kb-and-reasoning/demo-2018/converttordf
https://gitlab.com/v4designEU/v4design-stbol
https://gitlab.com/v4designEU/v4design-stbol

D6.3 – V1.0

Page 70

https://gitlab.com/v4desig
nEU/3d-recon

Message bus Public Publicly available from the
original developers’
website. V4Design code
repository:
https://gitlab.com/v4desig
nEU/v4d-messagebus

Apache Licence v2.0

V4D REST API Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d-rest-api

Apache Licence v2.0

Data Storage and
Retrieval

Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d_data_storage

Apache Licence v2.0

Video Games
Authoring tool

Protected V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d4unity

Apache Licence v2.0

Architecture
Authoring tool

Public V4Design code repository:
https://gitlab.com/v4desig
nEU/v4d4rhino

MIT

Figure 44. V4Design Gitlab repository

https://gitlab.com/v4designEU/3d-recon
https://gitlab.com/v4designEU/3d-recon
https://gitlab.com/v4designEU/v4d-messagebus
https://gitlab.com/v4designEU/v4d-messagebus
https://gitlab.com/v4designEU/v4d-rest-api
https://gitlab.com/v4designEU/v4d-rest-api
https://gitlab.com/v4designEU/v4d4unity
https://gitlab.com/v4designEU/v4d4unity
https://gitlab.com/v4designEU/v4d4rhino
https://gitlab.com/v4designEU/v4d4rhino

D6.3 – V1.0

Page 71

4.2 Packaging

Packaging describes the distribution and installation process of each module in the platform.
Currently, each module has a proper packaging strategy, which corresponds to its development
framework and underlying technologies. Some modules are server-side and contained in Docker
images, others are installed as backend components, and some are installed on the user
machine as desktop applications.

The following table specifies for each developed module, the packaging strategy that it follows.

Table 22: Packaging policies of V4Design modules

Module Distribution Installation

Language Analysis Docker Deployment using Docker

Language
Generation

Docker Deployment using Docker

V4D Crawler Java source code (Maven
project) and jar executable,
along with configuration files.

Deployment using Docker (e.g.
Swarm, Kubernetes, …).

Aesthetics and
Texture Extraction

(Docker, exe, .app, .zip,
tinfoil)
python source code

Deployment using Docker

KB Population Java application Deployed over any java runtime
environment

Reasoning Java application Deployed over any java runtime
environment

Object Localization (Docker, exe, .app, .zip,
tinfoil)
python source code

Deployment using Docker

3D Reconstruction Compiled executable for
windows 64bit

Manual installation

Message bus Windows and Linux
distributions

Installation instruction available on
the developer’s website.

V4D REST API Docker Deployment using Docker

Data Storage and
Retrieval

Jar executable of a Spring
boot project, along with
configuration files.

launched by running the jar
executable.

D6.3 – V1.0

Page 72

Video Games
Authoring tool

Dll file Import into Unity as an extension
(currently works only in Windows OS)

Architecture
Authoring tool

A .net plugin for Rhino 6 in
the form of a .rhi (Rhino
Installer Engine extension) or
.yak (Rhino Package Manager
extension) which are both
.zip files with some specific
file structure.

Double clicking on the .rhi or from
Rhino’s Package Manager interface.

D6.3 – V1.0

Page 73

5 DEMONSTRATOR URLS AND INFORMATION

In the following section we describe each prototypical service developed as a demonstration for
the role that each architecture component performs. Some of the demonstrations are more
mature than others, for instance some are completely functional while others are in early
development stages.

In all cases, the demonstrations implement the following architecture requirements and
technical functionalities:

- Each demonstrator is hosted on a server (demonstrators can share servers but should
communicate exclusively through the message bus - no local communication is allowed).

- The demonstrators should be able to remain online for at least a single platform cycle
(processing of an incoming array of raw data objects).

- Each demonstrator connects to the message bus and implements a client capable of sending
and receiving messages.

- The demonstrator is capable of responding to the topics to which it should subscribe
according to the platform cycle design.

- Demonstrators that generate output related to the user assets generated by the platform
should be able to push data onto the Data Storage and Retrieval

- Demonstrators should be able to read data from the Data Storage and Retrieval by sending
get requests.

The demonstrators should meet the expectations related to the maturity of their corresponding
modules according to the development roadmap described in D6.1 and updated in section 2.2,
2.3 and 2.4 in this deliverable.

The current deployment environment of each demonstrator is explained in the following table.

Table 23: Description of the demonstrators’ deployment environment

Demonstrator Current Deployment Environment

Language Analysis Docker Swarm at UPF, no public IP. Language Analysis component
establishes connection to message bus.

Language Generation Docker Swarm at UPF, no public IP. Language Generation
component establishes connection to message bus.

V4D Crawler Independent server with the following system specifications:
Windows 10 Pro, Intel® Xeon® Silver 4108, 128GB RAM, 452GB
SSD + 3.54TB HDD. Installed Software: Java 8, MongoDB 3.4.
It is triggered offline by the system administrator.

Aesthetics and Texture
Extraction

Deployed in an independent server with the following
configuration:
Operating System: Windows; CPU: N/A; GPU RAM: 2-3 GB; RAM:

D6.3 – V1.0

Page 74

N/A; Disk Space: 30 GB
Tensorflow -gpu 1.1.0,Python 3.5, OpenCV 3.3.1, keras-gpu 2.1.6,
pandas 0.23.0, matplotlib 2.2.2, anaconda 1.6.14, h5py 2.8.0,
numpy 1.12.1, pillow 5.1.0, scikit-learn 0.19.1

KB Population The KB Population is currently deployed at a local server with an
IP 160.40.50.196:7200 with the following configuration
CPU: Intel® Xeon® Silver 4108, RAM: 128GB, HDD: 452GB (SSD) +
3.54TB (HDD), both Raid 1, GPU: NVIDIA GeForce GTX 1080Ti, OS:
Windows 10 Pro 64-bit

Reasoning Deployed in a local server with the following configuration:
CPU: Intel® Xeon® Silver 4108, RAM: 128GB, HDD: 452GB (SSD) +
3.54TB (HDD), both Raid 1, GPU: NVIDIA GeForce GTX 1080Ti, OS:
Windows 10 Pro 64-bit

Object Localization Deployed on a server with the following configuration:
Operating System: Windows, CPU: N/A, GPU RAM: 2-3 GB, RAM:
N/A, Disk Space: 30 GB
Tensorflow -gpu 1.1.0,Python 3.5, OpenCV 3.3.1, keras-gpu 2.1.6,
pandas 0.23.0, matplotlib 2.2.2, anaconda 1.6.14, h5py 2.8.0,
numpy 1.12.1, pillow 5.1.0, scikit-learn 0.19.1

3D Reconstruction Local server with the following configuration: Windows 10 pro,
Intel Xeon w2133, Nvidia 1080gtx. Network storage.
Installed software: .net framework, and Docker.

Message bus The current deployed version of the V4D Message Bus is
operational and hosted on its own server. The current server is a
virtual cloud server with a fixed IP 34.253.156.62, accessible
through the DNS: https://bus.v4design.eu.
The message bus console can be accessed through the following
port: https://bus.v4design.eu:8162/.
Currently, it supports the following protocols in an interoperable
manner:

● OpenWire ssl: bus.v4design.eu:61617
● AMQP amqp+ssl: bus.v4design.eu:5671
● STOMP stomp+ssl: bus.v4design.eu:61614
● MQTT mqtt+ss: bus.v4design.eu:8883
● WSS wss: bus.v4design.eu:61619

The server has 1GB RAM memory and 10GB disk space, and a
Ubuntu Linux operating system. Installed are:

● An instance of ActiveMQ 5.15.0
● Apache KahaDB

https://bus.v4design.eu/
https://bus.v4design.eu:8162/

D6.3 – V1.0

Page 75

● Apache Tomcat
● Java Runtime Environment (JRE) JRE 1.7

The current message bus can handle up to 1000 requests per
minute. It listens to its open ports for messages to channel.
Messages are addressed in First-in-first-out order, each message
is assigned to one of several pre-existing topics, to which the
services listen. When a message is added to a topic, it propagates
instantaneously to the topic listeners.

V4D REST API Not Yet Available

Data Storage and
Retrieval

Windows 10 Pro server, Intel® Xeon® Silver 4108, 128GB RAM,
452GB SSD + 3.54TB HDD. Installed Software: Java 8

Video Games Authoring
tool

Desktop application installed on the user machine.

Architecture Authoring
tool

Desktop application installed on the user machine.

The URLs of the demonstrators developed for the operational prototype are listed below in the
following table.

Table 24: Description of the demonstrators’ deployment environment

Component Owner Demo URL

Language Analysis UPF http://taln.upf.edu/v4design

Language Generation UPF
http://mklab.iti.gr/v4design/lib/exe/fetch.php?medi
a=d6.3-upf_demo_langgen.zip

V4D Crawler CERTH http://160.40.51.32:10000/scrapingDemo

EF API Crawler EF https://repl.it/@calvinwuyts/combineharvester

Aesthetics Extraction CERTH http://160.40.49.184/vbs2018/#/

Texture Proposal CERTH
http://mklab.iti.gr/v4design/lib/exe/fetch.php?medi
a=texture_proposal_demo.zip

KB Population CERTH http://160.40.50.196:8080/ConvertToRDF/

Reasoning CERTH http://160.40.50.196:8080/ConvertToRDF/

Data Storage and Retrieval CERTH http://34.245.66.12/V4DMB

Building and Object
Localization CERTH

http://160.40.49.184/vbs2018/#/
http://mklab.iti.gr/v4design/doku.php?id=2nd_plen
ary_review_preparatory_meeting_leuven#demos

3D reconstruction KUL
http://160.40.49.184/v4d_3d_demo
http://136.144.207.251:8080/reconstructiondemo/

http://taln.upf.edu/v4design
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=d6.3-upf_demo_langgen.zip
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=d6.3-upf_demo_langgen.zip
http://160.40.51.32:10000/scrapingDemo
http://160.40.49.184/vbs2018/#/
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=texture_proposal_demo.zip
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=texture_proposal_demo.zip
http://160.40.50.196:8080/ConvertToRDF/
http://160.40.50.196:8080/ConvertToRDF/
http://34.245.66.12/V4DMB
http://160.40.49.184/vbs2018/#/
http://mklab.iti.gr/v4design/doku.php?id=2nd_plenary_review_preparatory_meeting_leuven#demos
http://mklab.iti.gr/v4design/doku.php?id=2nd_plenary_review_preparatory_meeting_leuven#demos
http://160.40.49.184/v4d_3d_demo
http://136.144.207.251:8080/reconstructiondemo/

D6.3 – V1.0

Page 76

Authoring Tool: Architecture MCNEEL
https://drive.google.com/open?id=1ftI9CxJDkR508q
vQ8L2_2Y-Hl7lSX7Dc

Authoring Tool: Video Games NURO
http://mklab.iti.gr/v4design/lib/exe/fetch.php?medi
a=v4d4unity_demo.zip

Message bus MCNEEL http://34.245.66.12/V4DMB

https://drive.google.com/open?id=1ftI9CxJDkR508qvQ8L2_2Y-Hl7lSX7Dc
https://drive.google.com/open?id=1ftI9CxJDkR508qvQ8L2_2Y-Hl7lSX7Dc
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=v4d4unity_demo.zip
http://mklab.iti.gr/v4design/lib/exe/fetch.php?media=v4d4unity_demo.zip
http://34.245.66.12/V4DMB

D6.3 – V1.0

Page 77

6 SUMMARY AND CONCLUSIONS

In this document, we have described the state of the art of the operational prototypes of the
V4Design platform modules. The preliminary implementation is geared to consolidating the
integration model of the platform, and establish its processing cycle, as well as to provide a
proof-of-concept for each envisioned technology.

Section 2 presented a detailed description of the V4Design architecture, including its conceptual
design, a generic definition of a V4Design service, its communication model, its processing cycle,
and the input/output model to illustrate how data is processed and created. In addition,
services were introduced individually, including concepts, technical requirements and
development plans, and sample output examples to illustrate the added value of each service.
Then, middleware components and authoring tools were discussed in a similar manner.

Section 3 presented the visual demonstrations developed as part of the operational prototype
for the platform, being the message system visualization, the authoring tool for architect, and
the authoring tool for video games.

Section 4 described how the code of the different modules and components is organized and
shared in repositories, discussing the protection of the code by item. A list of repository
addresses was provided to access the shared codes. In addition, the section presented the
packaging model of each item, discussing how it is deployed by third parties.

Overall, the development of the operational prototypes has met its goals in accordance with the
platform development roadmap detailed in D6.1, with no notable deviations in the plans
accorded for each module. The integration of the platform has been completed successfully, but
no complete processing cycles have been launched yet, which is planned to commence in the
following development cycle.

Most of the operational prototypes show basic functionalities that meet the most basic of its
associated requirements. However, each prototype has validated the capacity of its related
component to connect to the platform, receive data and process it, and post the results back to
other components that come next in the pipeline.

The user tools illustrate how the envisioned user profiles can access and manipulate the data
created by the V4Design platform. They represent a placeholder for the envisioned user-
experience and will be refined accordingly in the next development cycle.

Finally, with each of the platform modules, including services, middleware, and tools,
prototyped and integrated, the work can now focus on building the processing pipeline that
would convert raw data collected by the platform to valuable assets for the user, and
developing the user experience that shows how these assets add value in the user ecosystem.
This will be the focus of the coming development cycle, designated as the first version of the
platform.

D6.3 – V1.0

Page 78

REFERENCES

[1] https://developer.rhino3d.com/api/

[2] https://developer.rhino3d.com/api/RhinoCommon/html/R_Project_RhinoCommon.html

[3] Unity 3D https://unity3d.com/

[4] What is RhinoCommon? https://developer.rhino3d.com/guides/rhinocommon/what-is-
rhinocommon/

[5] Why Docker? https://www.docker.com/why-docker

https://developer.rhino3d.com/api/
https://developer.rhino3d.com/api/RhinoCommon/html/R_Project_RhinoCommon.html
https://unity3d.com/
https://developer.rhino3d.com/guides/rhinocommon/what-is-rhinocommon/
https://developer.rhino3d.com/guides/rhinocommon/what-is-rhinocommon/
https://www.docker.com/why-docker

