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Executive Summary

This deliverable reports on the basic techniques for spatio-temporal building and object
localization (STBOL). Specifically, this deliverable will elaborate on the initial methods for: (i)
scene recognition, which also includes the methodology followed for keyframe extraction
and shot-detection and (ii) spatio-temporal building and object localization in images and
videos, which consists of two bilateral methods for object and building detection and
localization. The goal of the spatio-temporal object and building localization component is to
analyse the compiled visual data (images, videos) and provide on the one hand a
computational boost to 3D reconstruction and on the other hand a semantic meaningful
annotation for the observed visual objects and scenes.

The document elaborates on the WP4 modules, which are related to T4.2 and the
appropriate approaches, components, and resources that were adopted in order to fulfil the
respective functionalities that were described in the Description of Actions (DoA) and later
on documented by the users throughout the compiled user requirements (D7.1, D7.2). The
deliverable introduces the basic techniques for spatio-temporal building and object
localization (STBOL) that were deployed during the first phase of the project’s lifetime, for
the implementation of the 1 prototype (M18). Furthermore, a description of the analysis
requirements for visual components is provided and analysed thoroughly, while for each
module an overview of the State-of-the-Art (SoA) and a comparison to other approaches is
documented. The evaluation approaches and results are finally explained and demonstrated
at the end of the document.

More specifically, the modules that are described in further detail are the ones that were
deployed for fulfilling the basic functionalities of STBOL component:

a) The Scene Recognition (SR), which analyses visual data in order to segment the acquired
video in shots and extract the most meaningful frames (i.e. keyframes) for 3D reconstruction
and scene recognition. It also provides a high-level annotation about the existence of
buildings and architectural objects that might exist in the visual scenes.

b) Spatio-Temporal Object Localization (STOL), which is responsible to detect, recognize and
spatio-temporal localize the desired architectural objects that might exist in the acquired
V4Design image and video samples.

c) Spatio-Temporal Building Localization (STBL) receives the scene recognition outcome, i.e.
video frames and images that have a high probability to contain a building or architectural
object and classifies them at a pixel-level in order to localize the architectural elements that
exist inside them.

It is worth to note, that the performance of the above modules has been extensively
evaluated in terms of their accuracy and the first experimental results are encouraging to
continue to work on this direction.

Project partners, CERTH and KUL collaborated and deployed all the methodologies and
modules for multimedia analysis and visual data understanding.

Page 4



4D

D4.2 -V1.0

Abbreviations and Acronyms

ASPP Atrous Spatial Pyramid Pooling

CH Could Have

CNN Convolutional Neural Network
ConvNet Convolutional Neural Network

DoA Description of Actions

CRF Conditional Random Field

DCNN Deep Convolutional Neural Network
DW Deutsche Welle

GPU Graphics Processing Unit

FAST Features from Accelerated Segment Test
FC Fully Connected

FCN Fully Connected Network

FFmpeg Fast Forward Moving Pictures Expert Group
FPN Feature Pyramid Network

FR Functional

HLUR High Level User Requirement

JE Joint Entropy

MH Must Have

Mi Mutual Information

mloU Mean Intersection of Union

MS COCO Microsoft Common Objects in Context
N-FR Non Functional

RCNN Region Convolutional Neural Network
ResNet Residential Network

Rol Region of Interest

SAD Sum of Absolute Difference

SH Should Have

SIFT Scale Invariant Feature Transformation
SoA State of the Art

SR Scene Recognition

STBL Spatio-temporal building localization
STBOL Spatio-temporal building and object localization
STOL Spatio-temporal object localization
SfM Structure-from-motion

UR User Requirement

VGG Visual Geometry Group
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1 INTRODUCTION

In VADesign, the scope of T4.2 (Localization of the interior and exterior of buildings in visual
content) is: (i) to identify buildings or objects of architectural interest in video frames and
images in order to help the 3D reconstruction process (T4.3) to improve its computational
efficiency and (ii) to segment these assets from their background content (image) so as to
help 3D reconstruction (T4.3) to isolate the inlier from the outlier depth point clouds and
recognize the segments within a set of predefined building classes in order to augment the
BIM model (T4.4) that will be encapsulated within the Knowledge Base (T5.2). In general, the
modules of T4.2 are essential and useful tools that help on the acceleration and semantic
augmentation of the V4Design 3D models.

During the first half of V4Design project lifetime (M1-M18), T4.2 contributed on the first
milestone (MS1) by defining the technical requirements of its modules (D6.1) and aligning
them towards the initial user requirements (D7.1) that existed at that moment of the
project. T4.2 also contributed to the second milestone (MS2) of the V4Design project by
deploying and integrating the initial versions of scene recognition (SR) and spatio-temporal
building and object localization (STBOL) to the operational prototype of the system (D6.3). At
the same moment, T4.3 contributed to the definition of the updated technical requirements
and system architecture (D6.2). Finally, T4.2 contributed to the third milestone (MS3) by
improving spatio-temporal building localization (STBL) and continuing the integration of its
modules for the implementation of V4Design first prototype (D6.4). The iteration of T4.2's
implementation will continue until the completion of the final prototype, by contributing to
the fourth (MS4) and final prototype (MS5). The described timeline is depicted in Figure 1.

Dur 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
T4.2 Localization of the interior and exterior of
buildings in visual content 32
T4.2.1 Study SoA and collect data 6
T4.2.2 Implement STBOL 24
- Deploy Scene Recognition (SR) module 4
- Deploy Spatio-Temporal Object Localization (STOL) 6
- Deploy Spatio-Temporal Building Localization (STBL) 10
T4.2.3 Integrate components to the system 9 _
Deliverables D4.2 D4.5
Milestones Ms1 Ms2 Ms3 Ms4 Ms5

Figure 1: T4.2 towards V4Design lifetime

As described earlier, T4.2 interacts both internally and externally with Work-Packages (WP):
WP2, WP4, WP5, WP6 and WP7. As far as internal interaction is concerned, T4.2 is
responsible for the identification of the video frames or images that contain an exterior or
interior architectural object, using Scene Recognition (SR), and for notifying T4.3, which is
responsible for the reconstruction of 3D models from images or documentary videos, about
their existence. This way, T4.3 can accelerate and improve the reconstruction procedure by
ignoring the visual material that was deemed irrelevant. Further acceleration can be
achieved by including Spatio-Temporal Building and Object Localization (STBOL), which
extracts the background binary masks, and distinguishes between the foreground and
background points that have been reconstructed. Finally, T4.2 interacts with T4.4 by
providing the multi-class segmentation results that it acquires from STBOL and in this way
can help the augmentation of the BIM models information.

As far as the external WPs are concerned, we identify the correlation between T4.2 and WP2
(T2.1, T2.3 and T2.4), which are responsible for crawling, scraping, identifying, annotating
and accumulating all appropriate visual data that contain architectural structures and
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interior artefacts. T4.2 not only uses these data to help and augment the 3D reconstruction
process, but also to train and enhance its models. Additionally, T4.2 provides its scene
recognition labels and localization/segmentation masks to T5.1 and T5.2 in order to populate
the V4Design Knowledge Base (KB) and in this way augment the information that exists
inside the KB and provide a more sophisticated retrieval process. T4.2 is finally related to
T6.1, T7.1, T7.2, where the user and technical requirements are defined, and T6.4 where
service integration is performed. Thus, it is clear that this task provides an essential and
useful service for the V4Design platform and is intercorrelated with several tasks of the
project.

1.1 Objectives

The objectives of T4.2 for the 1* period of the project (M1-M18) are aligned with the main
goals that were described in the DoA and summarized as follows:

* Study the literature that exists on scene recognition and spatio-temporal building and
object localization (Accomplished).

* Design and deploy the appropriate computer vision and deep learning algorithms that
will determine the presence of buildings and interior objects in movies and
documentaries to be re-used and re-purposed (Accomplished by implementing the SR
module).

* Use and extend SoA technologies on keyframe extraction, shot detection, object
detection and scene recognition in order to create a module for the spatio-temporal
detection of interior objects and the classification of building exteriors, cityscapes and
other built environments (Accomplished by the implementation of the STBOL module).

T4.2 also fulfilled several other goals in order to fulfil and satisfy all 1*' year’s reported use
cases and user requirements (D7.1, D7.2):

* Not only distinguish whether buildings or architectural artefacts exist inside image and
video frames, but also identify the scene where they exist. An initial estimation provides
knowledge on whether the depicted scene is from an interior or exterior environment,
while a more detailed estimation is given afterwards, predicting the class of the place.

* Distinguish between foreground and background pixels within a video frame or image,
estimated that it contains a building, in order to identify and remove the outliers from
the 3D point clouds and improve the computational cost of 3D reconstruction.

* Extract the segmentation mask of more than 100 building categories within an image
and video frame, enhancing the BIM model by identifying the parts of the reconstructed
buildings.

* Detect and provide semantic information about more than 500 interior objects that
could be used as assets in the V4Design architecture and video game creation platforms.

1.2 Results towards the foreseen objectives of V4Design project

Until now, V4Design has fulfilled the foreseen objectives of the project by completing the
development of the basic functionalities of scene recognition and spatio-temporal building
and object localization with the following activities:

a) Gathered annotated visual data from benchmark datasets (EC002 — Wiki crawled
images, EC006 — COCO dataset, ECO07 — Open Images dataset, ECO08 — ImageNet, EC009
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— Places2 dataset, EC010 — SUN397, EC011 — Oxford buildings dataset, Mapillary road
dataset) and V4Design consortium partners (IC001, 1C002, 1C005, 1C006, ICO07, 1CO0S,
IC009, 1C010, 1C011, ICO12, ICO13, 1C014, I1CO15, ICO16, 1CO17, 1CO19, ICO20, IC021, 1C022,
IC023, 1C024, 1C025, 1C026, 1C028 as reported in D4.1) and used them so as to train their
Scene Recognition (SR) and Spatio-Temporal Building and Object Localization (STBOL)
modules.

b) Deployed the initial version of Scene Recognition (SR) in images and video frames from
documentaries and drone footage by deploying State of the Art (SoA) computer vision
and deep learning scene recognition algorithms in the compiled datasets.

c) Deployed the initial version of Spatio-temporal Building and Object Localization (STBOL)
in images and video frames by deploying State-of-the-Art computer vision and deep
learning object detection and scene segmentation algorithms.

1.3  Future plans

* To re-study the literature that exists on scene recognition and spatio-temporal building
and object localization in order to update any advances and improvements that have
been introduced in the literature.

* To gather novel visual annotated material and datasets to enhance the recognition and
segmentation models that have been developed for SR and STBOL.

* To accelerate the computational efficiency of scene recognition module by redesigning
and compressing its deep learning architecture based on the detected concepts.

* To extend spatio-temporal building and object localization by tracking and maintaining
the coherency of detected objects and buildings throughout time.

* To design spatio-temporal masks that will maintain the temporal coherency of
semantically segmented pixels over sequential video frames.

1.4 Outline

The outline of this deliverable is as follows. Sections 2 and 3 respectively contain a brief
presentation of the relevant user requirements for the analysis of the visual and audio
content for spatio-temporal building and object localization modules, and a description of
the relevant state-of-the-art methodologies in the scientific fields of computer vision, deep
learning and segmentation. The methodology analysis of the three modules, Scene
Recognition (SR), Spatio-Temporal Object Localization (STOL) and Spatio-Temporal Building
Localization (STBL) are then described in Sections 4, 5, 6 respectively. We decided to break
Spatio-Temporal Building and Object Localization (STBOL) in two separate and distinguished
algorithms, because they differ on the subject that they focus on (as highlighted in the
related work), but also because their data require a totally different confrontation and
analysis schema. Parameter selection, evaluation metrics and comparison to related work
for all deployed algorithms is provided in Section 6, while Section 7 concludes the
deliverable and defines the future work for SR and STBOL modules until M34.
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2 SPATIO-TEMPORAL BUILDING AND OBJECT LOCALIZATION
(STBOL) REQUIREMENTS

The V4Design user requirements have been identified in D7.2 Initial use case scenarios and
user requirements. Some of them are associated with Scene Recognition (SR), while others
are directly linked to Spatio-Temporal Building and Object Localization (STBOL). Further
details of the former are provided in Section 2.1, while the latter is broken down in Section
2.2 and Section, separating requirements for object localization from those for building
localization. It will be clear from this section, that T4.2 is aligned with the user requirements
that were defined in D7.2, as the basic version of its modules (SR, STBOL) already satisfies all
of the defined direct and indirect needs.

2.1 Scene Recognition (SR) requirements

As can be seen in Table 1 four user requirements from D7.2 have been identified that can be
directly or indirectly associated with the scene recognition module of V4Design, namely
UR_10, UR_21, UR_50 and UR_66. As far as UR_10 and UR_21 are concerned, users required
from the V4Design platform to extract meaningful tags and semantics data from the
acquired video and image samples. Scene Recognition (SR) is a candidate module that can
satisfy these criteria by providing meaningful building and architectural information about
the data that V4Design’s storage might contain. This mainly refers to recognition of
interior/exterior and of the scene type in video and image samples but can also be
correlated to 3D models through the SIMMO model and the Knowledge Base.

In UR_50 users defined that they would like to have access to lists of 3D models, but also
find contextual information, other assets and related work through the V4Design platform.
The SR module, through the visual analysis that it makes in videos and images, can provide
this contextual information, by providing semantically useful information about which region
of the picture or video frame belongs to the background and what other artefacts exist
around the reconstructed 3D model through the tags that is feedforwards to the V4Design
Knowledge Base (KB).

Finally, UR_66 defines that video game designers would like to have a list of references to
existing 3D models that have been detected from a 2D video scene in order to directly
import it into the authoring tool environment. Scene Recognition (SR) is not only able to
identify the context of the scene, i.e. whether it is an interior or exterior space, but it can
also classify the True Positive visual samples, i.e. the ones that are relevant to video game
and architecture design, to a predefined list of desired places and produce tags for each one
of them.

Table 1: Relevant user requirements reported in D7.2 for Scene Recognition (SR)

Functional or

User . Priority based
. Associated . . . Non
Requirement Detailed description . on MoSCoW
(UR) HLUR Functional framework
(FR/N-FR)

HLUR_203 As a user | want further details about
HLUR_208 the acquired footage - image/ video

UR_10 FR MH
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HLUR_ 214 (semantic data/ tags)

As a user | want a description of the

UR 21 HLUR_204 FR SH
- - acquired 3D model
e aon (12 e e o e e
UR_50 HLUR_204 contextual informatio;1 other assets N-FR SH
HLUR_208 !

and related work

As a game designer, | want to get a
list of references to existing 3D
HLUR_212 models that have been detected
HLUR_215 from a 2D video scene to directly
import into the authoring
environment.

UR_66

2.2 Spatio-Temporal Object Localization (STOL) requirements

As can be seen in Table 2, six user requirements from D7.2 have been associated with the
Spatio-Temporal Object Localization (STOL) module of V4Design, namely the UR_10, UR_13,
UR_21, UR_50, UR_63 and UR_66. As far as UR_10 and UR_21 are concerned, we can safely
say that that contextual information and description about the objects that exist in the visual
data is required. The STOL module satisfies this requirement, as it is able to recognize
objects from the acquired images or video frames that have been identified from SR. This
module indicates whether they contain an architectural object or building image or video
frame and provides a tag for each detected object. The information is provided back to the
V4Design system by informing the Knowledge Base (KB) with the appropriate tags and
semantic data.

In UR_13, it is declared that the users would like to have further details about the bounding
box of the extracted 3D model. The STOL module satisfies this requirement by providing
multiple spatio-temporal bounding boxes for the detected objects that might appear in the
visual scene, i.e. image or video. This is then correlated to the 3D model by feedforwarding
the information through the V4Design platform and associating the data using the SIMMO
model.

Then UR_50 identifies that V4Design users would like to have access to lists of 3D models,
but also find contextual information, other assets and related work. STOL module can
provide this contextual information from 3D models through tags, bounding boxes and
masks that are acquired from the image and video data that it analyses.

In addition to all the above, in UR_63 it is declared that a film production company would
like to be able to put a location to the assets, such as putting the asset in the exact place as
intended. STOL can in cooperation with 3D reconstruction satisfy this requirement by
providing the relative location of the detected assets through the bounding boxes and let
the 3D reconstruction place the object in the 3D environment.

Finally, UR_66 declares that video game designers would like to get a list of references to
existing 3D models that have been detected from a 2D video scene to directly import them
into the authoring environment (i.e. Unity, Rhino-3D). STOL can satisfy this UR by
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segmenting video or image samples and producing tags for each of the detected object. The
V4Design platform can then be used to pass the label/tag to the appropriate 3D model.

Table 2: Relevant user requirements reported in D7.2 for Spatio-Temporal Object

Localization (STOL)

Functional or|_ . .
User . unctl Priority based
. Associated . L Non
Requirement Detailed description . on MoSCoW
(UR) HLUR Functional framework
(FR/N-FR)
HLUR_203 As a user | want further details about
UR_10 HLUR_208 the acquired footage - image/ video|FR MH
HLUR_ 214 (semantic data/ tags)
HLUR_203 As a user | want further details about
UR_13 HLUR_208 the bounding box of the extracted|FR MH
HLUR 214 3D model (unit independent)
UR 21 HLUR 204 As a .user | want a description of the ER SH
- - acquired 3D model
e aon (12 e e o e e
UR_50 HLUR_204 . - N-FR SH
contextual information, other assets
HLUR_208
- and related work
As a film production company | want
HLUR_212 to be able to put location of the
UR_63 HLUR_213 assets, such as putting the asset in|FR CH
HLUR_215 the exact place as intended. A 3D
drag-and-drop would be required
As a game designer, | want to get a
list of references to existing 3D
HLUR_212 models that have been detected
UR_66 HLUR_215 from a 2D video scene to directly FR SH
import into the authoring
environment.
2.3 Spatio-Temporal Building Localization (STBL) requirements

As can be seen in Table 3, four user requirements from D7.2 have been associated with the
Spatio-Temporal Building Localization (STBL) module of V4Design, namely the UR_10,
UR_21, UR_50 and UR_66. Taking a closer look, we can see that STBL satisfies UR_10 and
UR_21, by classifying each pixel of an image or video frame and providing a tag for each
detected architectural object, to the V4Design system. In this way, the users are provided
with valuable tags and descriptions about the assets that the V4Design data storage
contains.

In UR_50, user partners declared that they would like to have access to lists of 3D models,
but also find contextual information, other assets and related work. The STBL module
provides this contextual information from 3D models through tags and masks, extracted
from the analysis that it makes on the visual data that are also used for 3D reconstruction.
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Finally, in UR_66, video game designers using the V4Design system declared that they want
to have a list of references to existing 3D models that have been detected from a 2D video
scene to directly import into the Unity authoring environment. STBL satisfying this by
segmenting videos and images and producing tags for each detected class.

Table 3: Relevant user requirements reported in D7.2 for Spatio-Temporal Building

Localization (STBL)

Functional or

User . Priority based
. Associated . A Non
Requirement Detailed description . on MoSCoW
(UR) HLUR Functional framework
(FR/N-FR)
HLUR_203 As a user | want further details about
UR_10 HLUR_208 the acquired footage - image/ video|FR MH
HLUR_ 214 (semantic data/ tags)
UR 21 HLUR 204 As a .user | want a description of the ER SH
- - acquired 3D model
o aon |12 e e o o e
UR_50 HLUR_204 . ) N-FR SH
- - contextual information, other assets
HLUR_208
- and related work
As a game designer, | want to get a
list of references to existing 3D
HLUR_212 models that have been detected
UR_66 HLUR_215 from a 2D video scene to directly FR SH

import into the

environment.

authoring
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3 RELEVANT WORK

During the first months of the first period (M3-M5), a thorough study of the relevant
computer vision and deep learning domain has taken place. The study was mainly
concentrated on the algorithms that were foreseen to been implemented during M1-M18,
meaning Scene Recognition (SR) and Spatio-Temporal Building and Object Localization
(STBOL). This involved the study of Deep Learning and Computer Vision algorithms that focus
on scene recognition, object detection, and semantic segmentation. Relevant benchmark
and accumulated within V4Design datasets are also reported and thoroughly analysed, in
means of quality and applicability for each scenario, in D4.1.

3.1 Scene recognition (SR)

A recent study of the object detection literature indicates that significantly high results have
already been achieved by using deep-learned features from convolutional neural networks
(ConvNets) on large-scale object recognition datasets (ImageNet (Krizhevsky, 2012), MS
COCO (Tsung-Yi Lin, 2014), etc.). However, since most Convolutional Neural Networks
(ConvNets) features are designed for object detection, they cannot be directly used for
scene classification, as desired for V4Design purposes because; the recognition mainly
focuses on detecting small-scale rigid daily objects. To that end, we turned our attention to
other techniques, such as (Zhou, 2017), which introduced a new scene-centric dataset called
Places (Zhou, 2017) with more than 7 million images of scenes and focus on representing
images through a holistic approach, trying to recognize the scene/place instead of separate
objects. This dataset has been very useful and suitable for scene recognition problems,
especially when trained on VGG16, VGG19 (Krizhevsky, 2012) and ResNet DCNN (He K. Z.,
2016) architectures.

Another scene recognition technique, introduced in (Gong, 2014), applies ConvNets within
local multi-scale patches and integrates the patch-based ConvNets with global ConvNets, in
order to capture both detailed information and holistic characteristics in scenes. Moreover,
in (Gangopadhyay, 2016), a statistical aggregation solution is proposed, based on ConvNets
for scene classification. Both the convolutional neural networks (ConvNets) on large datasets
(to acquire spatial information) and the resulting ConvNets features were further analysed
by statistical methods in the temporal domain to maintain spatio-temporal coherency
throughout their representation.

The acclaimed C3D feature was proposed in (Tran, 2015), and describes how to transform 2D
ConvNets to 3D ConvNets in order to exploit deep convolutional information in both spatial
and temporal dimensions. However, C3D can only handle small video clips with a few frames
and discards the long-term information in videos, due to the large computational cost.

(Huang, 2019) focus, firstly, on the short-term motion and spatial properties, and secondly,
on the long-term motion information. In this way, the method combines long-term
information with short-term deep information, in order to obtain a complementary
representation and better understanding toward scene recognition. In Section 4.1.3 we
describe in detail the methodology of the implemented V4Design approach which is based
on VGG-16 architecture combined with a subset of Places dataset.
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3.2 Spatio-Temporal Object Localization (STOL)

Deep learning techniques have enormous success solving image segmentation problems and
in image classification tasks. Fully Convolutional Networks for Semantic Segmentation,
presented by (Long, 2015), popularized the use of end-to-end convolutional networks and
introduced skip connections from higher resolution feature maps. (Lin G. a., 2017) propose
to use an encoder part of ResNet-101 (He K. Z., 2016) blocks and a decoder part of RefineNet
(Lin G. a., 2017) blocks, which concatenate high-resolution features from encoder and low-
resolution features from previous RefineNet blocks. Another encoder-decoder architecture
was proposed by (Peng, 2017) which includes very large kernels convolutions, but these
large kernels convolutions are computationally expensive and they are adopted because
networks tend to gather information from a smaller region. In the Mask R-CNN method (He
K. a., 2017) a two stages approach is presented, based on Faster R-CNN (Ren, 2015) for
object detection and localization. In the first stage, the candidate object bounding boxes are
extracted using Region Proposal Networks. In the second one, the method extracts a binary
mask for each region, in parallel to the feature extraction from each candidate bounding box
and performs classification and bounding box regression. All the above-mentioned
techniques are applicable to interior design object detection and localization while we focus
on the Mask R-CNN approach.

3.3 Spatio-Temporal Building Localization (STBL)

Image segmentation approaches that are mainly related to buildings images have also been
developed in literature. Scale Invariant Feature Transform (SIFT) descriptors are involved in
(Shalunts, 2011), where a method is proposed to classify facade windows by their
architectural style. The methodology is based on local feature learning and SIFT descriptor
extraction, clustering them to learn a visual vocabulary. Other works in semantic
segmentation from buildings, outdoors spaces and larger architecture structures, involve 3D
models and point clouds as input, beyond the traditional 2D space of images and videos.
(Martinovic, 2015) introduce a new approach for semantic segmentation of facade
modelling based entirely on 3D models. Firstly, they present an image-based 3D point cloud
and afterwards they classify and split the facade. The authors propose a structure-modelling
step through architectural principles, before projecting original images onto the final
estimated 3D model. (Liu, p. 2017) propose a symmetric regularization on the 2D facade
parsing problem. The authors train an entirely deep convolutional neural network to mark
bounding boxes that are generated by object detection. They apply their proposed
symmetric loss for segmentation results and then they refine the results using Region
Proposal Network (RPN) bounding boxes. In (Peng, 2017) the authors present a local
classifier, which is learned to select views for multi-view semantic labelling. They find the
single image part, which supports best the semantic labelling of each face of a 3D mesh
model. (Gadde, 2017) propose an auto-context based framework for facade segmentation.
This method is a sequence of decision tree classifiers that are stack pixel classifiers using
auto-context features and 3D point clouds and then learned using stacked generalization.
The methodology developed in V4Design is based on the “DeeplLab” system (Chen, 2017),
which is trained on images of buildings with semantic annotation. The method is learning to
detect and localize items of buildings by applying the so-called “Atrous convolution” with up-
sampled filters for dense feature extraction.
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4 SCENE RECOGNITION (SR) - V1

The Scene Recognition (SR) focuses on analysing visual data (i.e. images, video frames),
before 3D reconstruction module in order to provide not only the existence of buildings or
architectural objects in a visual scene, but also identify whether the analysed frame depict
an outdoors or indoors scene. This information will undoubtedly accelerate the
computational efficiency of 3D reconstruction as it will not be obliged to analyse video
frames or images that do not contain a target object or building. Furthermore, it will be easy
to provide useful metadata to the appropriate 3D reconstruction in order to run the process
for an interior or exterior environment. Scene recognition also provides the type of scene
that is depicted in the video frame or image that is analysed, by choosing amongst the 365
category scenes that have been integrated in SR model until now, leading to useful
annotations about the things that exist in the analysed videos and images.

As far as the SR modules are concerned, we deployed several types of techniques in order to
analyse and process the acquired video frames and images. Initially, we deployed shot
detection in order to segment the videos in semantically relevant video sequences, by
tackling hard cuts and fade cuts as well. Blurred images were also identified so as not to be
processed and spoil the scene recognition and 3D reconstruction analysis. The acquired
images and video frames are analysed by Scene Recognition (SR) module, in order to
understand the content and context of the analysed visual scene. In the following sections,
we elaborate on the methodology that was followed in order to implement the basic
functionalities of the aforementioned components.

4.1 Methodology

4.1.1 Shot Detection

In many cases videos and movies, directed by professionals, contain shots of multiple scenes
and as such are not directly useful for photogrammetry. It is therefore important to pre-
process these videos. In a preliminary step, the various shots are first delineated and can
then be further processed to extract, proper frames for reconstruction (see Section 4.2 of
D4.3).

Deliverable D4.3 explains in details that we implement two types of shot detection. A first
algorithm deals with the detection of hard cuts. These are very common scene cuts where
the transition between shots is abrupt. A typical example is shown in Figure 2. It was found
that a SAD-based algorithm is fast and efficient and achieves better results than a histogram
and mutual information-based method.

A second type of cuts is so-called fade-cuts. These transitions are harder to detect because
they happen gradually. It is no surprise that mutual information methods achieve better
results for this type of shot cuts, because they search for frames in which (part of) the
information can be ‘explained’ by the previous or next frame. Especially the joint entropy
(JE) value is a good discriminator and can be used for the detection of fade-cuts. A good
example is shown in Figure 3.
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Figure 2: Consecutive frames 760, 761, 762 and 763 of the St Michael’s church Daily Drone
video. The scene cut between 761 and 762 is detected automatically.
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Figure 3: Frames 2994 and 4765 where a fade cut is detected. These frames clearly contain
information from two different shots, yielding large increases in the JE score.

4.1.2 Dealing with blurry frames

When video sequences are recorded in a freehand style, one can never totally exclude the
possibility of blurred frames. In most cases this blurriness is actually motion blur that is the
result of sudden motions of the camera. Blurred frames cause problems not only on scene
recognition and spatio-temporal building and object techniques, but also on
photogrammetric 3D reconstruction ones, mostly because the amount of matched or
tracked features drops dramatically when such a frame is encountered. It is therefore best to
try to detect these frames beforehand and deal with them.

Once more, details of the chosen algorithms are described in detail in Section 4.3 of
deliverable D4.3. We found that two methods deliver useful results: a SAD-based algorithm
that computes the total amount of gradient information in an image and compares it to
neighbouring frames, and a keypoint-extraction based algorithm that compares the number
of extracted features. The FAST feature detector was chosen because it is efficient, makes
use of local intensity changes and does not suppress features in each other’s
neighbourhood. Figure 4 show examples of (parts of) detected blurry frames.
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Figure 4: Two frames showing motion blur.

4.1.3 Scene recognition

As far as scene recognition is concerned, the methodology we adopted has Deep
Convolutional Neural Networks (DCNNs) with two components: one on the hidden layers for
the feature extraction part, and one for the classification part. In the feature extraction
component, the network combines a sequence of convolution and pooling operations where
the features are progressively detected. In the classification part, the fully connected layers
serve as a classifier on top of these extracted features, assigning a probability for each class
that the algorithm predicts.

Convolution is one of the main operations in a DCNN architecture, being the mathematical
combination of two tensors to produce a third one. The convolution is performed on the
input data with the use of a filter (known also as kernel) to then produce a feature map. We
execute a convolution by sliding the filter over the input, which can be either a 2D or 3D
array of elements. At every location, a matrix element-wise multiplication is performed and
the result is summed onto the feature map. The output of the convolution is passed through
an activation function. Stride is the step of the convolution filter displacement for each step
and it is usually equal to one, meaning that the filter slides pixel by pixel.

In general, the size of the feature map is always smaller than the input; hence, it is common
to prevent the feature map from shrinking using padding. After one or a stack of convolution
layers, it is common to add one pooling layer to continuously reduce the dimensionality,
thus reducing the number of parameters, to decrease the training time. The most frequent
type of pooling is max pooling, which takes the maximum value in each considered window.

The convolution and pooling layers are then followed by a few fully connected layers (FC),
which can only accept one-dimensional data. To convert our 3D feature array to one-
dimensional vector we “flatten” the array by concatenating the rows of each dimension. This
vector is further passed to a logistic regression classifier to produce the final vector of class
score predictions. The input size of our training set is a set of m images with dimensions n;, *
n, * n., where n, and n,, are the height and the width of an image with n,. channels.
VGG16 is a 16-layer neural network, not including the max-pool layers and the SoftMax
activation in the last layer. In particular, the image is passed through a stack of convolutional
layers, which are used with filters of a small receptive field f * f. Spatial pooling is carried
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out by five max-pooling layers, which follow some of the convolutional layers (not all), as
described in the original paper (Simonyan, 2014). Max-pooling is performed over a w,, * w,,
pixel window, with stride s.
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Figure 5: The framework of scene-recognition approach.

The width of convolutional layers starts from 64 in the first layers and then increases by a
factor of 2 after each max-pooling layer, until it reaches 512 as depicted in Figure 5. The
stack of convolutional layers is followed by three Fully-Connected (FC) layers. The final layer
is the SoftMax layer. All hidden layers are equipped with the Rectified Linear unit (ReLU
(Krizhevsky, 2012)), which is defined in Equation 1.

f(x) = —max (0, x)
Equation 1: The Rectified Linear Unit

ReLU is an element-wise operation, applied per pixel, and replaces all negative pixel values
in the feature map with zeros. The main property of ReLU is the introduction of non-linearity
of the Convolutional Network and therefore the ability to identify and extract realistic non-
linearity.

Innovation (beyond state of the art): In the context of V4Design Scene Recognition (SR)
module, the VGG16 framework was pre-trained on Places dataset on first 14 layers, which
has the initial 365 Places categories. The remaining layers were trained on a subset of 145
selected classes of Places dataset as depicted in the Table 4 in order to adjust the SR model
to V4Design needs and classify only the relevant scenes. Moreover, Scene Recognition
classifies scenes in two general environmental categories, i.e. indoor or outdoor, and use
them so as to differentiate between frames that could create a 3D model for interior design
(e.g. object) to a 3D model from exteriors (e.g. building). The great enhancement of this
module is that in cooperation with 3D reconstruction and reasoning modules could lead to
annotated 3D models that could be retrieved from the Knowledge Base (KB) and recreate
fast and accurate interior and exterior 3D buildings and objects.
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5 SPATIO-TEMPORAL OBJECT LOCALIZATION (STOL) - V1

Spatio-Temporal Object Localization (STOL) focuses on recognizing the architectural objects
that exist in images and videos in a pixel level representation. These masks are then
provided to 3D reconstruction model in order to be notified about the visual data that they
contain potential object(s) that could be reconstructed and populated to the Knowledge
Base (KB). In this way, 3D reconstruction module not only saves a great deal of processing
time to analyse the number of video frames that exist in a video file, but also provides
meaningful information to the Knowledge Base (KB) and the V4Design retrieval system.
Authoring tools could also use these masks to highlight the objects that have been
reconstructed and their predicted class name.

5.1 Methodology

The methodology that was followed so as to deploy STOL module of V4Design was initially
based on (He K. a., 2017), which proposed a Mask RCNN approach to tackle pixel-wise object
instance segmentation by extending Faster-RCNN (Ren, 2015). Mask RCNN adopts a two-
stage pipeline, with the first stage identical to a Region Proposal Network (RPN). In the
second stage, in parallel to predicting the class and box offset, Mask RCNN adds a branch,
which outputs a binary segmentation mask for each Region of Interest (Rol). The new branch
is a Fully Convolutional Network (FCN) on top of a CNN feature map. In order to avoid the
misalignments caused by the original Rol pooling (RolPool) layer, a “RolAlign” layer is
proposed to preserve the pixel-level spatial correspondence. With a backbone network
ResNeXt101-FPN (Xie, 2017) (Lin T. Y., 2017), Mask RCNN achieves top results for the COCO
object instance segmentation and bounding box object detection.

More specifically, the implementation of the initial version of the STOL module involves a
training phase, which does not only take into consideration class label information and
bounding box information about an object, but also mask information. The mask is the shape
of the boundary of an object that includes additional information compared to the bounding
box.

A multi-task loss on each sampled Rol is defined in Equation 2.
L= Lcls + Lbox + Lmask
Equation 2: The definition of loss function.

The classification loss L.;; and bounding-box loss Lj,, are identical to those defined in
(Girshick, 2015).

The mask part of the Equation 2 has a Km?-dimensional output for each Rol, which encodes
K binary masks of resolution mXxm, one for each of the K classes. L, is then defined as
the average binary cross-entropy loss from a per-pixel sigmoid.

For a Rol associated with ground-truth class k, L,,,s, is only computed from the k-th mask
and other mask outputs do not contribute to the loss.

A mask representation is used to encode an input object’s spatial layout. Although class
labels or box offsets collapse into short output vectors by fully connected (fc) layers, this is
not the case with the spatial structure of the extracted masks. A mXm mask is predicted
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from each Rol using an FCN (Long, 2015). In this way, each layer in the mask branch keeps
the mXm object spatial layout without collapsing into a vector representation that lacks
spatial dimensions. The network architecture, which we use, is the ResNet101, trained on
the Microsoft Common Objects in Context (MS COCO) dataset. The overall framework is
presented in Figure 6.
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Figure 6: The framework of the developed Mask-RCNN method.

In addition, it is described the “RolAlign” layer, which is developed because it is critical in
mask prediction. RolAlign is based on RolPool (Girshick, 2015), which is a standard operation
for extracting a small feature map (e.g., 7X7) from each Rol. RolPool first quantizes a
floating-number Rol to the discrete granularity of the feature map. The output, i.e. the
quantized Rol, is then subdivided into spatial bins, which are themselves quantized, and
finally feature values covered by each bin are aggregated by max pooling. A negative aspect
of RolPool is the quantization that is performed, e.g., on a continuous coordinate x by
computing [x/16], where 16 is a feature map stride and [:] is rounding. Similarly,
quantization is performed within dividing into bins (e.g., 7X7).

Contrary to RolPool, RolAlign removes the harsh quantization of RolPool, properly aligning
the extracted features with the input. Bi-linear interpolation (Jaderberg, 2015) is used to
compute the exact values of the input features at four regularly sampled locations in each
Rol bin, and aggregate the result (using max or average). In this manner, quantization of the
Rol boundaries or bins is avoided, using x/16 instead of rounding [x/16].

Innovation (beyond state of the art): As far as spatio-temporal object localization (STOL)
module is concerned, CERTH deployed a mask-RCNN framework, which adopts the two-
stage pipeline. The initial stage is identical to a Region Proposal Network (RPN), while the
second one, runs in parallel with the former so as to predict the class and box offset. Mask
RCNN adds a branch that outputs a binary segmentation mask for each one of the detected
Region of Interest (Rol). The new branch is a Fully Convolutional Network (FCN) on top of a
CNN feature map. In order to avoid the misalignments caused by the original Rol pooling
(RolPool) layer, a “RolAlign” layer is proposed in order to preserve the pixel-level spatial
correspondence. The V4Design STOL module uses a backbone network ResNeXt101-FPN and
fine-tuned Mask RCNN on the MS-COCO dataset in order to come in align with V4Design
project and localise interior objects and provide segmentation masks. This not only
improved the computational efficiency of STOL algorithm but also improved its prediction
scores in the remaining objects.
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6 SPATIO-TEMPORAL BUILDING LOCALIZATION (STBL) - V1

Spatio-Temporal Building Localization (STBL) uses the video frames outcome from scene
recognition module, which probably have a high probability to contain a building or
architectural object, in order to extract their segmentation mask by classifying them at a
pixel-level. The goal of this component is to provide binary masks to 3D reconstructions so as
to initially segment the foreground from the background elements of a visual scene and
afterwards to annotate the 3D models with appropriate recognized architectural structure.

6.1 Methodology

The STBL module of V4Design is based on Deeplab (Chen, 2017) that allows for segmenting
images and visual content in general. The model is adapted to the needs of V4Design by
selecting a specific set of classes to learn. Atrous convolution (Equation 3) is also involved,
that explicitly controls the solution at which feature responses are computed within deep
convolutional neural networks. The method involves enlargement of the view of filters so as
to incorporate larger context without increasing the number of parameters or computation
time. The Atrous spatial pyramid pooling (ASPP) is used to segment objects, such as items of
buildings, at multiple scales. Another strength of Deeplab is that it improves the localization
of object boundaries by combining methods from DCNNs and a fully connected conditional
random field (CRF), which is shown both qualitatively and quantitatively to improve
localization performance. The framework of DeeplLab model is illustrated in Figure 7 and, in
the following, we describe the adopted methodology.

In the first step or the method, the input image goes through the network with the use of
Atrous convolution and ASPP. The output from this network is a bilinear interpolation and, in
the second step, it goes through the fully connected CRF to then fine-tune the result and get
the final output. The equation of Atrous convolution is shown in Equation 3.
K
yli] = Z x[i + 7= klw[k]
k=1

Equation 3: The equation of Atrous convolution

Whenr = 1 (r = the rate), it is the standard convolution and whenr > 1, it is the Atrous
convolution, which is the stride to get the input sample during convolution. Atrous
convolution allows enlarging the field of view of filters to incorporate larger context. It thus
offers an efficient mechanism to control the field-of-view and finds the best trade-off
between accurate localization (small field-of-view) and context assimilation (large field-of-
view).
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Figure 7: The framework of DeepLab method

ASPP actually is an Atrous version of SPP, for which the concept was introduced in (He K. Z.,
2015). In ASPP, parallel Atrous convolutions with different rates are applied in the input
feature map, and are fused together. As objects of the same class can have different scales
in the image, ASPP helps to account for different object scales, which can improve the
accuracy.

A Fully Connected Conditional Random Field (FC-CRF) is applied to the network output:
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Equation 4: Fully connected Conditional Random Field.

Where x is the label assignment for pixels and P (x;) is the label assignment probability at
pixel i. Therefore, the first term 6; is the log probability. The second term, 6;;, is a filter, in

which p = 1whenx; # x;,and u = 0 whenx; = x;.

In the brackets of the last equation in Equation 4, we see the weighted sum of two kernels.
The first kernel depends on pixel value difference and pixel position difference, which is a
kind of bilateral filter, having the property of preserving edges. The second kernel only
depends on pixel position difference, which is a Gaussian filter. The optimal o and w are
found by cross validation. We choose to set the number of the iterations to 10, as we believe
that this will give a quite good prediction of the two parameters.

In the context of V4Design’s Spatio-Temporal Building Localization module, the
aforementioned framework is trained on a subset of 17 classes of Mapillary dataset
(Neuhold, 2017) and is learning to detect buildings, architectural structures, as well as to
localize them.
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Innovation (beyond state of the art): As far as Spatio-temporal building localization (STBL)
module is concerned, Deeplab framework was adopted and trained with V4Design aligned
and selected architectural elements from Mapillary dataset, in order to segment and
recognise the potential objects in the provided visual content. The implemented Deeplab
method uses Atrous Convolution, Fully Connected Conditional Random Field (CRF) and
Atrous Spatial Pyramid Pooling (ASPP) for acquiring the appropriate segmentation masks.
Experimental work took place with different DCNN architecture schemes, such as ResNet
and VGGNet, leading to the best acquired implementation for STBL purposes. Differently to
SoA, STBL concentrated only to architectural structures and elements, leading not only to
computationally efficient results, but also to highly accurate predictions.
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7 EVALUATION

7.1 Scene Recognition

7.1.1 Dataset

The Places dataset contains 1,803,460 training images with the image number per class
varying from 3,068 to 5,000. Examples of different categories from Places dataset are
illustrated in Figure 8. The validation set has 50 images per class and the test set has 900
images per class. Following the user needs of V4Design, we focus on specific classes as
depicted in Table 4 so as to improve the performance of the model both in terms of
efficiency and effectiveness.
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Figure 8: Examples of different categories from Places dataset

Table 4: The 145 selected classes of Places dataset that were used in V4Design.

alcove castle excavation library_indoor pub_indoor
Alley catacomb fabric_store library_outdoor restaurant
amphitheater cemetery farm lighthouse restaurant_kitchen
amusement_park chalet fire_escape living_room restaurant_patio
apartment_building_outdoor childs_room fire_station lobby River
aqueduct church_indoor food_court mansion rock_arch
arcade church_outdoor formal_garden manufactured_home rope_bridge
Arch classroom garage_indoor market_indoor Ruin
archaelogical_excavation clean_room garage_outdoor market_outdoor Schoolhouse
archive corridor gazebo_exterior mausoleum Shed
atrium_public cottage general_store_indoor mosque_outdoor Shopfront
Attic courthouse general_store_outdoor motel shopping_mall_indoor
auditorium courtyard greenhouse_indoor movie_theater_indoor ski_resort
balcony_exterior crosswalk greenhouse_outdoor museum_indoor Skyscraper
balcony_interior department_store gymnasium_indoor museum_outdoor Stable

Bar

diner_outdoor

home_office

nursery

swimming_pool_indoor
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barn dining_hall home_theater oast_house swimming_pool_outdoor
barndoor dining_room hospital office_building synagogue_outdoor
bathroom discotheque hospital_room pagoda temple_asia
bazaar_indoor doorway_outdoor hotel_outdoor palace throne_room
bazaar_outdoor downtown hotel_room pantry Tower
beach_house driveway house park train_station_platform
bedroom elevator_door hunting_lodge_outdoor parking_garage_indoor tree_house
berth elevator_lobby igloo parking_garage_outdoor Village
bow_window_indoor elevator_shaft industrial_area parking_lot water_tower
bridge embassy inn_outdoor patio wind_farm
building_facade engine_room kasbah pavilion Windmill
cafeteria entrance_hall kindergarden_classroom pier youth_hostel
campus escalator_indoor kitchen playground zen_garden

7.1.2 Comparison with existing tools in the market

There isn’t a specific market that focuses on scene recognition but there is some research
carried out and presented in State-of-the-Art papers for general scene recognition purposes.
The tendency in this research domain is to use alterations of DCNN frameworks, such as
AlexNet, GooglLeNet and ResNet (Zhou, 2017). Contrary to these approaches the V4Design
Scene Recognition module using a VGG-16 architecture, which specialises and is trained only
in classes that are of interest to architectural structures and elements. The comparison of
V4Design SR module to these techniques follows in Section 7.1.3

7.1.3 Evaluation

Based on the scene recognition methodology we have described in Section 4.1.3 , the model
is pre-trained on the Places dataset for the first 14 layers and on a subset of the Places
dataset for the last two layers. For the evaluation of the scene recognition module, we
examined several combinations of parameter settings in order to select the best performing
model. The selected parameters and their results are presented in Table 5. Moreover, in
Figure 9 we present the corresponding confusion matrices.

Table 5: Results of the scene recognition experiments.

Layers Batch size Epochs Acc 1l Acc 5
trained
Runl 4 32 20 37,42% 65,42%
Run2 2 32 20 44,55% 72,06%
Run3 2 64 10 50,17% 78,31%

Moreover, the integrated scene recognition module (run3) is not only annotated by the class
label, but also discriminates this class in a broader category as indoor or outdoor.
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Figure 9: Confusion matrices of SR experiments.

The evaluation involves analysis on V4Design visual data, as given by the project’s content
providers. The results are demonstrated in Figure 10, Figure 11 and Figure 12.

In the categorized dataset classes as indoor or outdoor environment, we examine if the
algorithm is able to predict this feature from the video content of DW’s daily drone imagery.
In Figure 10 the first two photos correctly predict the content as indoor and the rest as
outdoor. The first photo (up, left) is classified as dining room, while the second photo (up,
right) as attic. Despite the fact that the two video frames are semantically close to each
other, the second frame has some features (e.g. the slope of the left wall) that direct the
observer to an attic. The third frame is marked correctly as a balcony and the fourth one as
village. The last set of semantically similar frames involves again two different predictions: as
house on the left and a motel on the right. Even for a human observer is not possible to
decide whether the photo depicts a house or a motel.

Page 28



D4.2 -V1.0

#DailyDrone #DailyDrone

» + #DailyDrone -i. #DailyDrone

Figure 10: Frames from video of content provider.

In Figure 11 and Figure 12 we present qualitative results of the SR module from
Gendarmenmarkt pictures and daily drone video frames. We observe that some images
depict almost the same content with different output predictions such as village, palace and
downtown in Figure 12 or palace, church and tower in Figure 11. However, making the
distinction between these classes is a challenging problem even for a human.
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Figure 12: Results of SR module of Daily drone video frames.

7.2 Spatio-Temporal Object Localization (STOL)

We have described in Section 5.1 an implementation of Mask R-CNN, where the model
generates bounding boxes and segmentation masks for each instance of an object in the
input image. The model is based on Feature Pyramid Network (FPN) and a ResNet101
architecture.

7.2.1 Dataset

The COCO dataset (Tsung-Yi Lin, 2014) contains 91 common object categories (examples are
illustrated in Figure 13), with most of them having more than 5000 labelled instances. In
total, the dataset has 2,500,000 labelled instances in 328,000 images. In contrast to other
benchmark datasets, COCO dataset has fewer categories but more instances per category
and per image.
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Figure 13: Images from different categories from MS COCO dataset.

7.2.2 Comparison with existing tools in the market

After a thorough investigation of the spatio-temporal object localization market, we found
that there are some tools already exist there. More specifically, we can find on Google Play
and AppleStore that there are some mobile applications that have already included deep
learning models, pre-trained on benchmark object datasets. Object detector and iDetection
are two examples of this kind of applications. Object detector uses 80 classes of COCO
dataset and 1000 classes of Imagenet without bounding box. iDetection uses the YOLOv3-
SPP object detection algorithm. However, the V4Design STOL module uses more advanced
algorithms, such as Mask-RCNN variations trained in MS-COCO dataset, specifically tailored
on V4Design purposes, revolving architecture and video game design. In addition, we
provide a segmentation mask for each one of the detected objects. Further investingation
and comparison with the baseline techniques of these tools follows in Section 7.2.3

7.2.3 Evaluation

The implementation of our V4Design approach follows the Mask RCNN method, as described
in Section 5.1 , but there are a few cases where we improved or extended the
implementation. Firstly, we resize all images to the same size so as to support training
multiple images per batch. We preserve the aspect ratio, i.e. when the image is not square,
we pad it with zeros. Secondly, we use smaller learning rates than the original
implementation of 0.02, because we observed that smaller learning rates converge faster.

In Figure 14 and Figure 15 we present some qualitative results from images and videos that
content providers give us in style object localization. In the case of Figure 14 the objects as
table, chair, glass and persons are segmented correctly, but as can be seen in the Figure 15
there are some examples in which the module was not able to segment some objects in the
desired way. In particular, in the first and third images of Figure 15, the module falsely
predicts the statue and the pictures of people respectively as persons, which is not so absurd
since both statue and picture depict human faces. In the case of the second image, a part of
the carpet’s pattern is segmented as a book, but we realize that this specific area has the
shape and the colour that could potentially be a book.
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Figure 15: Falsely Segmented images using the V4Design STOL implemented approach.
7.3 Spatio-Temporal Building Localization (STBL)

7.3.1 Dataset

The Mapillary Vistas Dataset (Neuhold, 2017) is a large-scale street-level dataset containing
25,000 high-resolution images annotated into 66 object categories with additional,
instances-specific labels as presented in Figure 16.
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Figure 16: All categories of Mapillary Vistas dataset.
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In our case, we omit some classes like nature or vehicle, since we focus on architectural
structures. Our developed DeeplLab model is fine-tuned on the Mapillary dataset, but only
for the labels, which are included in the construction category, while all the others are
concerned as background. This not only produces a computational efficient system that
concentrates on the detection of architecture related artefacts, but also increases the
classification accuracy of the model as it has fewer classes to distinguish from each other.
The labels that we use in V4Design module are presented in the Table 6.

Table 6: The selected categories of Mapillary Vistas dataset

Class names Class id
barrier--curb 1
barrier--fence 2
barrier--guard-rail 3
barrier--other-barrier 4
barrier--wall 5
flat--bike-lane 6
flat--crosswalk-plain 7
flat--curb-cut 8
flat--parking 9
flat--pedestrian-area 10
flat--rail-track 11
flat--road 12
flat--service-lane 13
flat--sidewalk 14
structure--bridge 15
structure--building 16
structure--tunnel 17
other 0

7.3.2 Comparison with existing tools in the market

To the best of our knowledge there is only one product in the market that offers spatio-
temporal building localisation, named Mapillary. Contrary to their approach, we adapt to the
user requirements of V4Design project and focus on specific classes of buildings of the
considered dataset (Table 6). Comparison with this technique is presented in Section 7.3.3
providing a comparison of mloU results for several stages of training phase in specific
building classes.
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7.3.3 Evaluation

In V4Design, the STBL module detects architectural structures, so we train our model for the
aforementioned labels. The settings of the model involve a batch size of value 2, learning
rate of 0.0001, momentum value equal to 0.9 and weight decay of 0.0005. In Table 7 we
report the results of the computation of the mean loU metric, using the Scikit-learn® library
in Python.

Table 7: Mean loU results for several stages of the training phase

Steps mioU

120,000 0.3658
140,000 0.3892
160,000 0.3680
180,000 0.3681
200,000 0.4539
220,000 0.4602

We observe that after 220,000 steps the mean loU score reaches 46.02%, even at this
challenging task of 18 total classes including the background class.

As an example, in Figure 17 and Figure 18 we present some qualitative results for the
building localization in images and videos that content providers give us. In Figure 17, all
buildings are segmented correctly, but in Figure 18 there are some examples in which the
module was not be able to segment buildings correctly. Falsely segmented examples are
usually very low-resolution images or images where the target building is covering only a
small part of the image. Furthermore, in the case of images with low brightness, we also
observe that the performance decreases significantly.

! https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard score.html
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Figure 18: Falsely Segmented images using V4Design STBL implemented approach
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8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Taking into account the analyses and results presented in this deliverable, we can conclude
that all objectives and goals associated with user requirements (D7.2) have been successfully
satisfied during the first period of the project (M1-M18). Initially, related work has been
thoroughly studied and documented and then relevant architecture datasets have been
accumulated and used in order to train the appropriate scene recognition and spatio-
temporal building and object localization models. All relevant modules have been deployed,
evaluated and tested in benchmark and V4Design visual data. Furthermore, they were also
successfully integrated in the V4Design system. Technical requirements associated to each
documented user requirement needs and satisfied them with the basic functionality
outcome of the deployed modules.

8.2 Future work

As far as the future steps are concerned, that are envisioned to take place during the next
implementation phase of T4.2, we foresee to introduce a spatio-temporal coherency
throughout SR, STOL and STBL. We elaborate on this module in the following subsections.

8.2.1 Scene recognition (SR)

For Scene Recognition, we envisage that we could design and deploy a sophisticated
algorithm that correlates SR predictions from time to time, so that it can maintain the
temporal coherency amongst frames. In this way it will not produce false positive scene
recognition predictions for neighbour video frame intervals and will diminish the flickering
classification phenomenon between sequential video frames.

8.2.2 Spatio-Temporal Object Localization (STOL)

As far as STOL is concerned, we envision introducing a spatio-temporal coherency for the
detected objects, so that we can monitor them throughout time. This could occur by
deploying a spatio-temporal tracking of the detected bounding boxes and respectively the
segmentation masks. In this way, the 3D reconstruction algorithm will be aware of the exact
frames and intervals where a single object exists and will not make or require any
assumptions from the reasoning component (T5.2).

8.2.3 Spatio-Temporal Building Localization (STBL)

Similar to the above components, we plan to expand STBL so as to include the coherency of
its predictions throughout the temporal domain. In this way, it will be able to produce
accurate and coherent pixel predictions for the building classes that it recognizes from frame
to frame. The information will give the capability to 3D reconstruction to produce accurate
and reliable labels to its computed 3D models.
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