

 Page 1

V4Design
Visual and textual content re-purposing FOR(4) architecture, Design and virtual

reality games

H2020-779962

D4.3

First iteration of 3D reconstruction and
scientific report

Dissemination level: Public

Contractual date of delivery: Month 18, 30 June 2019

Actual date of delivery: Month 18, 28 June 2019

Workpackage: WP4: 3D model extraction from 2D visual content

Task: T4.3

Type: Report

Approval Status: Approved

Version: 1.5

Number of pages: 91

Filename: D4.3_V4Design_v1.5.pdf

Abstract

This deliverable represents the first iteration of 3D reconstruction and scientific report
describing and showing the SoA methods for image sequence analysis, and 3D sparse and
dense reconstruction.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

 Page 2

co-funded by the European Union

D4.3 – V1.5

Page 3

History

Version Date Reason Revised by

0.1 08/04/2019 ToC creation Maarten Vergauwen
(KUL)

0.2 12/04/2019 First text on shot and keyframe
detection

Maarten Vergauwen
(KUL)

0.3 16/04/2019 First text on photogrammetric pipeline Maarten Vergauwen
(KUL)

0.4 17/04/2019 Restructure and rename paragraphs in
TOC based on comments from CERTH.

Added examples of shot detection

Maarten Vergauwen
(KUL)

0.5 03/05/2019 Text on photogrammetric pipeline and
reconstructions + enhanced 3D model
extraction

Maarten Bassier & Jens
Derdaele (KUL)

0.6 22/05/2019 Elaborated on keyframe extraction +
implementation

Maarten Vergauwen &
Jens Derdaele (KUL)

0.7 23/05/2019 Moved two parts to D4.2 + adapted text
(shot detection and blurriness)

Maarten Vergauwen
(KUL)

0.8 24/05/2019 Preliminary text on user and system
requirements. Extra data and examples
for reconstruction + enhanced 3D
models

Maarten Bassier (KUL)

0.9 27/05/2019 Revision of text Maarten Bassier (KUL)

1.0 27/05/2019 Revision of text and restructuring
numbering. First version of the
introduction

Maarten Vergauwen
(KUL)

1.1 03/06/2019 Methodology system integration + SfM
pipeline discussion

Jens Derdaele (KUL)

1.2 03/06/2019 Final revision of deliverable before
internal review

Maarten Bassier (KUL)

1.3 17/06/2019 Version, incorporating comments by
internal reviewer

Maarten Vergauwen
(KUL)

1.4 18/06/2019 Remove content present in D6.3 Jens Derdaele (KUL)

1.5 19/06/2019 Move parts back from D4.2 (undo 0.7) Maarten Vergauwen
(KUL)

Author list

Organization Name Contact Information

KUL Maarten Vergauwen maarten.vergauwen@kuleuven.be

KUL Jens Derdaele jens.derdaele@kuleuven.be

D4.3 – V1.5

Page 4

KUL Maarten Bassier maarten.bassier@kuleuven.be

CERTH Kostas Afgerinakis koafgeri@iti.gr

D4.3 – V1.5

Page 5

Executive Summary

This deliverable reports on the development and implementation of the 3D reconstruction
pipeline. Next to the relevant scientific description, the integration of the message passing
schema of the 3D reconstruction and functions from Open Source libraries are discussed in
this document as well. The goal of the 3D reconstruction is the production of 3D mesh
models from image sequences originating from video and crawled imagery. This is further
extended by integrating building intelligence to extract meshes of existing patrimony.

This document describes in detail the WP4 modules and includes the presented methods,
functions and resources that were adopted in order to fulfil the requirements specified in
the DoA and user requirements (D7.1, D7.2). The deliverable thoroughly describes the
literature, methodology and experiments of the 3D reconstruction that were implemented
in the first prototype (M18). The inputs from STBOL, AE&TP and the crawling are discussed
with respect to the message passing schema. For each module, an overview of the State-of-
the-Art (SoA) and a comparison to other approaches is presented. This includes the
literature concerning Structure-from-Motion (SfM), existing software functionalities, video
processing and enhanced model extraction. The implemented functions are tested on
realistic project data and the performance is explained at the end of each section.

The following modules are presented. We highlight the most important parts for each:

a) The extraction of keyframes from input video sequences, which includes keyframe
estimation and detecting of degenerate inputs and blurry frames.

b) The photogrammetric SfM process including image preprocessing, sparse
reconstruction, dense reconstruction, meshing and model texturing.

c) The enhanced model extraction which interprets STBOL and AE&TP outputs as
described in D3.2 to segment building geometry.

KUL was responsible for the development of the described methodologies and modules for
3D reconstruction and enhanced model extraction. The process is fully automated including
parameter estimation, message passing and model extraction. The input raster data is
processed on KUL servers and the outputs are stored in the knowledge base developed by
CERTH conform the schema set up in WP2. The future work includes increasing system
robustness, integration of Linked Data from WP5 and additional reconstruction functions.

D4.3 – V1.5

Page 6

Abbreviations and Acronyms

AE&TP

SfM

STBOL

Aesthetics extraction and texture proposals

Structure-from-motion

Spatio-temporal building and object localization

SoA State-of-the-Art

GRIC Geometric Robust Information Criterion

MLE Maximum Likelihood Estimator

SIFT Scale-Invariant Feature Transformation

DoG Difference of Gaussians

RPC Remote Procedure Call

JE Joint Entropy

w.r.t. with respect to

SAD Sum of Absolute Differences

D4.3 – V1.5

Page 7

Table of Contents

1 INTRODUCTION ... 9

2 3D RECONSTRUCTION REQUIREMENTS .. 10

2.1 3D reconstruction requirements ... 10

2.2 Enhanced model extraction requirements ... 11

3 3D RECONSTRUCTION PIPELINE: OVERVIEW AND RELATED WORK 13

3.1 Image and/or video content ... 13

3.2 Camera calibration via sparse matching and reconstruction ... 13
3.2.1 Image features .. 14
3.2.2 Matching strategy ... 14
3.2.3 Camera recovery and sparse point cloud reconstruction .. 14

3.3 Dense matching ... 15

3.4 Dense point cloud generation, modelling and texturing .. 15

4 PROCESSING VIDEO ... 17

4.1 Issues with processing video w.r.t. images ... 17

4.2 Shot detection ... 17
4.2.1 Hard cuts: SAD-score and Histogram ... 17
4.2.2 Fade cuts: Mutual Information ... 20

4.3 Dealing with blurry frames .. 22

4.4 Image and video sequence analysis and keyframe selection ... 28
4.4.1 Video and photogrammetric reconstruction .. 28
4.4.2 GRIC .. 30
4.4.3 Selecting keyframes .. 32
4.4.4 Detecting degenerate sequences ... 33

4.5 Implementation and examples ... 33
4.5.1 Implementation .. 33
4.5.2 Bauhaus - Dessau example ... 35
4.5.3 Kochuu: example of panorama .. 39

5 3D RECONSTRUCTION: IMPLEMENTATION AND COMPARISON OF PHOTOGRAMMETRIC
RECONSTRUCTION SOLUTIONS ... 42

5.1 General overview .. 42

D4.3 – V1.5

Page 8

5.1.1 Software ... 42

5.2 In-depth comparison of software tools and libraries ... 42
5.2.1 List and details of compared tools ... 43
5.2.2 List and details of compared methods ... 43

5.3 Experiments... 46
5.3.1 Datasets .. 47
5.3.2 Overall test results .. 52
5.3.3 Comparison of the sparse reconstruction .. 56
5.3.4 Comparison of the dense reconstruction and meshing ... 59

5.4 Architecture design 3D reconstruction Pipeline ... 62
1. Content preparation .. 62
2. Frame extraction ... 62
3. Sparse, dense and textured mesh ... 63
4. Metadata management and result publishing .. 63

5.5 Implementation of SfM algorithms ... 63
5.5.1 Keyframe extraction ... 64
5.5.2 Sparse Reconstruction .. 64
5.5.3 Dense reconstruction ... 64
5.5.4 Service output... 64
5.5.5 Pipeline experiments .. 66
5.5.6 Conclusions ... 68

6 ENHANCED 3D MODEL EXTRACTION .. 69

6.1 Input from STBOL and AE&TP algorithms ... 69
6.1.1 STBOL .. 69
6.1.2 AE&TP ... 70

6.2 Segmentation of 3D models .. 72
6.2.1 Masking in SfM ... 72
6.2.2 Methodology .. 74
6.2.3 Experiments .. 75
6.2.4 Future work enhanced model extraction ... 78

6.3 Texture enhancement ... 80
6.3.1 Methodology .. 81
6.3.2 Texture Experiment .. 83
6.3.3 Future Work texturing .. 87

7 CONCLUSION & FUTURE WORK .. 88

7.1 Conclusions ... 88

7.2 Future Work .. 88

D4.3 – V1.5

Page 9

1 INTRODUCTION

The objective of the current deliverable is to describe the progress and the first
implementation of the 3D reconstruction module of the V4Design project, as well as provide
background information on the State-of-the-Art in a scientific manner. The 3D
reconstruction module is a vital part of the V4Design pipeline. This document describes the
challenges we face when dealing with data from the V4Design content provider partners and
the solutions that have been developed. As such it relates to deliverable D2.1 “Initial visual
and textual dataset creation and legal and ethical requirements” that provides an overview
of the image content, and to deliverable D4.1 “Empirical study of visual content”, which
highlights the issues present in this data. This deliverable also relates to deliverable D4.2
“Basic version of interior and exterior localization algorithms and tool”, as will be explained
in chapter 3 to 6.

The deliverable starts with an overview of the relevant user and system requirements that
drove the development of the 3D reconstruction and the enhanced model extraction
algorithms. These requirements are listed in chapter 2.

In order to be comprehensive, chapter 3 provides a description of a typical photogrammetric
3D reconstruction pipeline and the State-of-the-Art of algorithms that contribute to the
result: the extraction of 3D information from imagery. Camera estimation, sparse and dense
reconstruction, 3D model generation and texturing are explained.

In chapter 4 we elaborate on an how we tackle the important issue, encountered when
processing V4Design input data: the fact that a significant portion of the data consists of
video sequences. Multiple problems arise, such as the shot detection, blurry frames, and
keyframe extraction. All three issues are thoroughly explained in the current document. We
also show that a positive side effect of our solution is the possible detection of degenerate
cases, i.e. videos for which 3D reconstruction is not feasible.

Chapter 5 is an extensive chapter that deals with the implementation of the reconstruction
module for the V4Design pipeline. An overview is provided of the available State-of-the-Art
packages and experimental results are presented that reveal their pros and cons. We explain
which choices were made and provide more information on the implementation.

Chapter 6 deals with enhanced 3D model extraction. We explain how the input from the
STBOL and AE&TP modules can improve the 3D models, both for segmentation (via masking)
and texturing. We also highlight possible future improvements.

Finally, chapter 7 concludes the document, focusing on the strong points of the developed
3D reconstruction algorithms.

D4.3 – V1.5

Page 10

2 3D RECONSTRUCTION REQUIREMENTS

The V4Design user requirements have been identified in D7.1,7.2 through the initial use case
scenarios and user requirements. Some of them are associated and directly linked to the 3D
reconstruction pipeline, as detailed in Section 2.1 and Section 2.2.

2.1 3D reconstruction requirements

A number of user requirements from D7.2 (Use cases, requirements and evaluation plan)
have been associated with the SfM module (Table 1). Regarding UR_002, an architect wants
to retrieve a 3D model from a set of input images. Subsequently, high quality textures are
extracted as desired by UR_003. UR_8,B,C,D and E concerning various file formats is fulfilled
by publishing the outputs conform existing specifications and standards. These formats can
easily be exchanged using native i/o functions of existing software such as Rhinoceros. In the
UR_11A, an architect wants access to a gallery of 3D models, which refers to the knowledge
base that is populated through the proposed SfM pipeline. UR_13,14 pose requirements
concerning the accessibility of the metadata of the inputs and outputs of the SfM pipeline.
The 3D reconstruction process will accomplish these requirements by exporting metadata at
key steps of the process including the sparse reconstruction, the dense reconstruction, the
meshing and the model texturing. Similarly, UR_21 is fulfilled by not only populating the
knowledge base with meshes but also with the dense point clouds.

Table 1: Relevant user requirements reported in D7.1,7.2 for 3D Reconstruction

User
Requirement

(UR)

Associated
High Level

User
Requirement

(HLUR)

Detailed description of the user
requirement

Associate
Pilot Use

Case
(PUC)

Functional
or Non

Functional.
(FR/N-FR)

MoSCoW
framework

based
analysis

UR_002 HLUR_201
As an Architect I want to be able to
retrieve 3D-Models

PUC1
PUC2

FR MH

UR_003 HLUR_202
As an Architect I want to be able to
retrieve high and reduced resolution
textures

PUC1
PUC2

FR MH

UR_008 HLUR_204
As a user I want various file formats
as outputs:

PUC1
PUC2
PUC3
PUC4

FR SH

UR_008B HLUR_204
As a user I want various output file
formats such as OBJ and FBX for 3D
models

PUC1
PUC2
PUC3
PUC4

FR SH

UR_008C HLUR_204
As a user I want various output file
formats such as JPG, TIFF, BMP and
PNG for textures

PUC1
PUC2
PUC3
PUC4

FR SH

UR_008D HLUR_204
As a user I want various output file
formats such as vrmat and mdl for
Materials

PUC1
PUC2
PUC3
PUC4

FR SH

UR_008E HLUR_204 As a user I want various output file PUC1 FR SH

D4.3 – V1.5

Page 11

formats such as Adobe swatches
library for Colour Palette

PUC2
PUC3
PUC4

UR_011A
HLUR_203
HLUR_207
HLUR_208

As an Architect I want a UIX a detailed
view of a Gallery of 3D model
(with/without texture) and usage
examples from other users

PUC1
PUC2

N-FR MH

UR_013
HLUR_203
HLUR_207

As an Architect I want UIX: Detailed
search by features:
- Quality (3D model/ texture), Footage
features, augmented data

PUC1
PUC2

N-FR SH

UR_014 HLUR_203

As an Architect I want UIX: Download
settings (saveable profiles):
- Mesh quality/format, Texture quality/
format/ layers (checkboxes), Material
definition file, Colour palette (e.g.:
adobe swatches)

PUC1
PUC2

N-FR MH

2.2 Enhanced model extraction requirements

Seven user requirements from D7.2 have been associated with the enhanced model
extraction module of V4Design, namely the UR_002, UR_003, UR_004, UR_011A, UR_013,
UR_017 and UR_018 (Table 2). Similar to the 3D reconstruction, UR_002, UR_003, UR_011A
and UR_013 are fulfilled by segmented models only depicting building geometry.
Additionally, the user can decide texture quality. The texture reuse discussed in UR_004 is
met by integrating the texture superimposition of D3.2 (Basic version of aesthetics concept
extraction algorithms & tools) onto the calculated models. The system allows the definition
of multiple texture files for one mesh model, allowing the user to choose a texture of a
model according to their needs. As far as UR_017 is concerned, the model recognition is
focussed on building extraction in addition to the more general 3D reconstructions. Finally,
in the UR_018, an Architect wants to have the "intelligence" of an architectural composition
tool (combination of texture, colours, shapes). The enhanced model extraction and texturing
identifies combo’s of mesh objects and textures and produces detailed building geometry.

Table 2: Relevant user requirements reported in D7.2 for Enhanced model extraction

User
Requirement

(UR)

Associated
High Level

User
Requirement

(HLUR)

Detailed description of the user
requirement

Associate
Pilot Use

Case
(PUC)

Functional
or Non

Functional.
(FR/N-FR)

MoSCoW
framework

based
analysis

UR_002 HLUR_201
As an Architect I want to be able to
retrieve 3D-Models

PUC1
PUC2

FR MH

UR_003 HLUR_202
As an Architect I want to be able to
retrieve high and reduced resolution
textures

PUC1
PUC2

FR MH

UR_004 HLUR_202
As an Architect I want to be able to
reuse textures (Pattern extraction /
seamless texture generation)

PUC1
PUC2

FR CH

UR_011A
HLUR_203
HLUR_207
HLUR_208

As an Architect I want a UIX a detailed
view of a Gallery of 3D model
(with/without texture) and usage
examples from other users

PUC1
PUC2

N-FR MH

D4.3 – V1.5

Page 12

UR_013
HLUR_203
HLUR_207

As an Architect I want UIX: Detailed
search by features:
- Quality (3D model/ texture), Footage
features, augmented data

PUC1
PUC2

N-FR SH

UR_017
HLUR_203
HLUR_205
HLUR_206

As an Architect I want texture and
material recognition that might appear
in images and videos.

PUC1
PUC2

N-FR CH

UR_018
HLUR_203
HLUR_208

As an Architect I want to have the
"intelligence" of an architectural
composition tool (combination of
texture, colours, shapes)

PUC1
PUC2

N-FR CH

D4.3 – V1.5

Page 13

3 3D RECONSTRUCTION PIPELINE: OVERVIEW AND RELATED WORK

The 3D reconstruction pipeline of V4Design is built according to well-established
photogrammetric principles and consists of a set of consecutive steps that are executed
automatically. Manual intervention is not necessary but can improve the results in certain
situations. This chapter outlines the procedure and briefly describes the most important
concepts of every step.

3.1 Image and/or video content

Every photogrammetric 3D reconstruction pipeline depends heavily on the quality of the
input data. Deliverable D4.1 dealt with this issue in a thorough manner. In this document the
requirements of the input data were described and the available data from content
providers and outside sources was assessed. It was concluded that the most important
requirements for good input data are:

 The presence of a baseline between camera positions, since it is not possible to
calculate depth information from images that are captured without changing camera
position between recordings.

 The rigidity of the recorded scene. Moving objects (people, cars, …) cannot be
reconstructed but if the majority of the scene is rigid, they can be eliminated from
the 3D reconstruction.

 The presence of sufficient distinct features in the scene, i.e. no untextured,
homogeneous surfaces.

 The image quality and resolution have a direct impact on the 3D result.

Most photogrammetric software packages or libraries focus on processing separate images,
because their resolution is typically (much) higher than that of videos and the baseline
constraint is also more easily fulfilled when the camera shoots individual pictures. However,
in V4Design we deal with many datasets that contain video. The adaptation of the
algorithms (such as the detection of shots and the extraction of keyframes) is important in
this regard and will be described in chapter 4.

3.2 Camera calibration via sparse matching and reconstruction

Photogrammetric 3D reconstruction is built upon the principle of resection, in which the
intersection between the backprojected rays from two or more images is computed. In order
to execute this, two pieces of information are needed: the camera calibration (both internal
and external) in order to compute the backprojected rays, and the correspondences
between images through which these rays are constructed.

The number of pixels in an image is so large that it is unfeasible to employ every pixel from
every image to recover the camera calibration. Moreover, not every pixel is equally well
suited for this task. That is why most photogrammetric pipelines recover the camera
calibration through a so-called ‘sparse matching and reconstruction’ step. This is a set of
algorithms, that typically consists of the following elements:

1. Extraction and description of image features
2. Matching of image features between images
3. Recovery of the camera setup and reconstruction of a sparse point cloud

D4.3 – V1.5

Page 14

We will briefly describe these steps and highlight the relevant issues for V4Design.

3.2.1 Image features

Sparse feature points in the images are extracted and their appearance is described using a
numerical descriptor. Widely used and well-performing extraction and descriptor algorithms
are SIFT (Lowe, 2004) and SURF (Bay e.a., 2008), together with their variants (SIFT-GPU,
SURF-GPU, ASIFT, DAISY, and so on). Feature extraction has a very high influence on the
performance and success of the entire pipeline. For this reason, all photogrammetric
reconstruction packages employ several settings to control the number of feature points per
image. COLMAP (Schönberger, 2016) for example allows very in-depth adjustable thresholds
and parameters for the feature extraction algorithm, while commercial packages typically do
not disclose their internal algorithms. Their settings are typically limited to internal image
resizing and selecting the maximum number of feature points per image.

When dealing with video frames, it is also possible to employ video tracking instead of
matching. Many tracking algorithms exist but literature agrees that the KLT tracker (Simon et
al., 2004) and its variants (affine KLT, adaptive KLT, Conv KLT) (Ramakrishnan, 2016)
outperform all others. Video trackers make use of the fact that the features to detect and
match appear in images that are consecutive and close together.

3.2.2 Matching strategy

The relative camera motion between a set of images will be determined with the use of
corresponding features. Standard exhaustive matching approaches attempt to match every
image against every other image. Since in this approach the number of matching candidates
increases quadratically with the image count, exhaustive matching is only viable with a
relatively low number of images. It is beneficial to build a feature space database and apply
approximate nearest neighbors search algorithms to speed up the matching of features in
this space. This is of particular importance for relative matching strategies, such as proposed
by Lowe (Lowe, 2004) in which the ratio of the best and second best match is compared to a
threshold. For larger datasets, sequential approaches are appropriate for ordered images
sets with consecutively captured images. For unordered datasets a vocabulary tree approach
can be used (Schönberger, 2016) as well. Prior knowledge is also employed such as GPS
coordinates in the EXIF data. Commercial software packages typically include multiple
matching strategies depending on the input data.

3.2.3 Camera recovery and sparse point cloud reconstruction

The extracted image correspondences are used to estimate camera poses, camera internal
parameters and 3D coordinates of image points, yielding a sparse point cloud. The
computation is based on the inherent structure between two images: the epipolar
geometry. Algorithms exist to compute this geometry from correspondences in the form of
the fundamental matrix. If the internal parameters of the camera are known
(approximately), the essential matrix, rather than the fundamental matrix, can be computed
(Nistér, 2004), which requires fewer correspondences, is more stable and also directly yields
a metric reconstruction, instead of a projective one that needs to be upgraded using self-
calibration.

D4.3 – V1.5

Page 15

 Two major pipelines can be distinguished to perform this step: incremental and global. An
incremental pipeline is the most common approach that adds one image at a time,
calculates the unknown parameters and thus grows the reconstruction. Due to a potential
buildup of error, better known as drift, this process requires repeated operations of a bundle
adjustment (Triggs, 2010) optimizing the camera parameters to minimize the reprojection
error. This is a computationally expensive step that severely impacts the performance for
large datasets. A global reconstruction pipeline follows an alternative approach and
considers an entire view graph at the same time instead of incrementally adding images to
the reconstruction (Jiang 2013). These algorithms estimate the relative orientation of all
images in a single step by first computing the pairwise orientation of all image pairs and then
combining this information into one graph. This way only a single iteration of the bundle
adjustment is required at the end of the process. While much more efficient, this approach is
more sensitive to outliers. To tackle the issues of efficiency, accuracy and robustness, recent
efforts focus on the implementation of a hybrid reconstruction technique (Cui, 2017).

3.3 Dense matching

The result of the previous steps consists of the camera calibration and a sparse point cloud,
containing the 3D reconstruction of the matched feature points. This point set is limited by
design and is not a detailed or convincing representation of the filmed scene. Once a sparse
representation of the scene has been completed, however, denser scene geometry may be
recovered by matching as many pixels between images as possible. This process, called
dense matching, is the most time-consuming part of the entire photogrammetric pipeline
but can be sped-up by employing graphical processing hardware and parallel processing.
Typical dense reconstruction pipelines produce depth maps from stereo pairs for all
registered images. This relies on accurate exterior and interior camera parameters and
epipolar geometry between images to constrain the search for matches (Remondino, 2017).
Other methods include the use of region growing (Shin, 2010) or graph-cuts (Kolmogorov,
2002). The reconstructed sparse point cloud can be employed as seeding areas for the
region growing or to constrain the search range for the dense matching. It can be beneficial
in this respect to slightly clean up the sparse cloud (manually or automatically, for instance
using masks) in order to decrease the processing time of the dense matching and improve its
results.

3.4 Dense point cloud generation, modelling and texturing

Depth maps are subsequently fused into a dense point cloud. It is important to note that the
information contained in the depth maps is often redundant, as SfM-compliant images are
usually taken with large overlap. Unnecessary overlap can increase the computational
complexity of the mesh generation step. Moreover, low-quality images (e.g. with motion
blur) may produce low-quality depth maps that harm the mesh generation process. That is
why a selection of the most suited depth maps can be made to generate the dense point
cloud (Tingdahl, 2011).

The dense point cloud, a union of the points from the depth maps of the selected views, is
then filtered, for instance using the quality maps (if available) of the dense matching or
taking into account the angle between the normal and the view angle. A dense surface is
then estimated from this fused point cloud, using surface reconstruction techniques, the

D4.3 – V1.5

Page 16

most common of which is Poisson reconstruction (Kazhdan, 2006). Finally the reconstructed
mesh is colorized using texture maps, that combine and blend the input images (Lempitsky,
2007).

D4.3 – V1.5

Page 17

4 PROCESSING VIDEO

4.1 Issues with processing video w.r.t. images

In V4Design we focus on the 3D reconstruction from video as well as images. The
photogrammetric pipeline of chapter 3 is targeted towards the processing of images of the
same scene. These images should be taken from different positions and should adhere to
several important constraints that were listed and described in deliverable D4.1.
Photogrammetric pipelines typically don’t focus on processing video. In such cases, the user
is typically instructed to extract separate frames from the video and feed these to the
photogrammetric package.

There are three important issues with this strategy. The first issue is the fact that videos
(especially those by a professional director) contain multiple and sometimes quickly varying
shots. Secondly, due to the rapid recording of consecutive image frames and the motion of
the camera, blurry frames are rather common. Finally, the extraction of optimal frames (so
called keyframes) for the photogrammetric processing is an important issue.

The two first issues are discussed at length in D4.2. We will only briefly address them here.
The third issue (keyframe extraction) will be discussed in detail. The final paragraph of this
chapter will explain more details on the actual implementation for the V4Design pipeline.

4.2 Shot detection

In many cases videos and movies, directed by professionals, contain shots of multiple scenes
and as such are not directly useful for photogrammetry. It is therefore important to pre-
process these videos. In a preliminary step the various shots are first delineated and can
then be further processed to extract proper frames for reconstruction (see D4.3).

The V4Design pipeline already offers an important advantage over other systems, in that the
STBOL component will evaluate the videos and determine where interesting content, such as
buildings, is recorded. This results in a set of frames and even masks in these frames that
should be evaluated for 3D reconstruction.

However, it might be the case that the STBOL component misses some frames in which the
object of interest is present, or (more common) that the video records other parts of the
same scene before or after the highlighted frames. It is advantageous to include these
frames in the 3D reconstruction processing because the camera calibration of a video
sequence will be more accurate and complete if a larger area with more depth variation is
filmed, and/or if the camera motion is larger, leading to larger baselines and therefore
better intersection angles. That is why we want to extend the detected frames to the entire
shot they are part of. This shot-detection algorithm is explained in this paragraph and makes
use of FFmpeg (FFMPEG, 2019), an open source library that is used to handle video streams
efficiently.

4.2.1 Hard cuts: SAD-score and Histogram

The first shot-detection algorithm we employ is straightforward but very fast. It makes use of
a threshold-based scene detector to segment the shots from each video. To detect the
various shots a scene score is calculated between consecutive frames, starting from the

D4.3 – V1.5

Page 18

frames that were highlighted by the STBOL component and going both forward and
backward in time. The scene score is determined by the sum of absolute difference (SAD)
between all pixels of consecutive frames. The resulting value varies between 0 and 1 and
may be used as a measure for similarity between two consecutive image blocks. A video cut,
and thus a new shot, is assumed when the scene score exceeds a certain threshold.
Extensive testing was done on videos provided by the content providers and it was
determined that a threshold of 0.3 was the optimal value.

Figure 1: Shot detection using SAD on het Daily Drone video of St Michaels

A first example is a video from the Daily Drone series by Deutsche Welle, depicting video of
the St. Michael’s church in Hamburg. There are clear shot cuts in the video, at frames 1, 404,
547, 762 and 903. Figure 2 shows images around frame 762, where the shot cut is detected.

Figure 2: Consecutive frames 760, 761, 762 and 763 of the St Michael’s church Daily Drone
video. The scene cut between 761 and 762 is detected automatically.

D4.3 – V1.5

Page 19

Figure 3: Shot detection using SAD on "Microtopia"

A less straightforward example is that of the train sequence in Microtopia, a movie by SLS. It
shows footage, filmed on-board a train, filming city buildings. The shot cut detection results
are shown in Figure 3 and clearly depict peaks that come in pairs. This is due to the specific
content of the movie: the trains pass through underpasses, bridges and short tunnels, and
our algorithms therefore detect a cut before and after these short passages. An example
around frame 316 is shown in Figure 4. The first cut is detected between the first and second
row (frame 316) and the second cut between the third and fourth row (frame 330).

Methods that are based on colour and intensity histograms are described in literature (Patel
1997, Tsekeridou 2001). These algorithms compute the histogram of the entire image and/or
columns of rows and compare them to the next frame, using a chi-squared value, computed
according to Equation 1 in which we sum the influence of every bin j of histogram H for
frames t and t+1. However, our experiments clearly show a much better performance for the
(slightly more computationally expensive) SAD method.

𝜒2 = ∑
(𝐻𝑡,𝑗 − 𝐻𝑡+1,𝑗)

2

(𝐻𝑡,𝑗 + 𝐻𝑡+1,𝑗)
2

𝑗

Equation 1: Computing the chi-squared value, comparing the histogram of frame t and t+1.

D4.3 – V1.5

Page 20

Figure 4: Frames of “Microtopia” train sequence with a shot cut between the first and
second and between the third and fourth row

4.2.2 Fade cuts: Mutual Information

The SAD method of the previous paragraph works well for hard cuts. However, modern
(edited) videos also regularly show smooth cuts with fade-ins and fade-outs. These cuts are
not detected by the SAD method because the pixel information gradually changes over a
length of several frames. A possible solution to this is to make use of an Information Theory-
based method, such as the one proposed by Cernekova e.a. (Cernekova, 2006). In their
method the mutual information (MI) and joint entropy (JE) between consecutive video
frames is computed. MI is a measure for the correspondence between two sets of data and
also takes into account the information that is carried by each frame at their overlap: MI
increases when the amount of shared information is large. The JE is related to the MI, in that
it is the sum of the entropy of both frames minus the MI.

The MI and JE of two consecutive frames can be computed using so-called carrying matrices
that store the number of pixels that change from intensity i to intensity j for every possible
value of i and j (0 <= i,j < 256). The MI and JE are then computed as in Equation 2.

D4.3 – V1.5

Page 21

𝑀𝐼𝑡,𝑡+1 = − ∑ ∑ 𝐶𝑡,𝑡+1(𝑖, 𝑗) log (
𝐶𝑡,𝑡+1(𝑖, 𝑗)

𝐶𝑡(𝑖, 𝑗)𝐶𝑡+1(𝑖, 𝑗)
)

𝑗𝑖

𝐽𝐸𝑡,𝑡+1 = − ∑ ∑ 𝐶𝑡,𝑡+1(𝑖, 𝑗) log (𝐶𝑡,𝑡+1(𝑖, 𝑗))

𝑗𝑖

Equation 2: Computation of MI and JE values for two consecutive frames

In our experiments we find that the MI value is good at detecting hard cuts, but not as good
as the SAD method, as can be seen from comparing Figure 5 with Figure 1. However, the JE
value can be used to predict fade cuts. An example is shown in Figure 6 which contains the
graph of the JE score for a video showing footage of the Cathedral Notre-Dame in
Strasbourg. More than ten fade cuts are present in this video, several of which can be
detected from the JE score by looking for sudden large increases in the JE value. Two
examples of such fades are shown in Figure 7. Notice how these frames typically contain
information from two shots and therefore result in a large JE score.

Figure 5: Mutual Information score for Daily Drone video of St. Michael’s church

D4.3 – V1.5

Page 22

Figure 6: Joint Entropy score for the video “Notre Dame in Strasbourg” with several fade cuts
that are visible in the curve

Figure 7: Frames 2994 and 4765 where a fade cut is detected. These frames clearly contain
information from two different shots, yielding large increases in the JE score.

4.3 Dealing with blurry frames

When video sequences are recorded in a freehand style, one can never totally exclude the
possibility of blurred frames. In most cases this blurriness is actually motion blur, which is
the result of sudden motions of the camera. Blurred frames cause problems for
photogrammetric reconstruction techniques, mostly because the amount of matched or
tracked features drops dramatically when such a frame is encountered. It is therefore best to
try to detect these frames beforehand and deal with them.

There are two options to deal with blurry frames. The simplest solution is of course to simply
discard them before extracting keyframes. A second option is to incorporate their detection
into the keyframe extraction algorithm itself. In both cases, however, it is imperative that we
can discern blurry frames from their sharp counterparts.

A possible technique to spot blurred frames automatically is based on comparing the image
sharpness of nearby frames. The value for the sharpness S of an image can for instance be

D4.3 – V1.5

Page 23

computed as the mean square of horizontal and vertical intensity gradients, evaluated as
finite differences:

𝑆 =
∑ ∑ (𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖, 𝑗))

2𝐻−1
𝑗=0 + (𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗))

2𝑊−1
𝑖=0

𝑊𝐻

Equation 3: Sharpness of a frame from global intensity gradients

where W and H are the width and height of the image and I is the intensity value matrix of
the image.

Figure 8: Frame 8156 and 8157 of the Akropolis video sequence. The second image clearly
suffers from motion blur.

Figure 9: Sharpness and detected blurry frames for the Akropolis video sequence

The value of such a sharpness measure depends on the image content and thus no absolute
threshold can be used to detect blurry frames. For example an image of a plastered wall of a
modern building has a much lower absolute S-value than that of a wall of an ancient Greek
temple. However, if one compares the sharpness of frames in each other’s neighbourhood,
then conclusions can be drawn. Due to motion blur, the gradient strength in blurred images
is significantly lower than in the other images. Figure 8 shows two frames of the Akropolis
video sequence. The second image suffers from motion blur, which is especially apparent
when looking at the building, which contains a lot of high-frequency information. Figure 9
shows a plot of the sharpness values for the relevant frames of this video sequence. A

D4.3 – V1.5

Page 24

significant drop is noticeable around frames 8157 and 8161. The images in Figure 8 depict
frames 8156-8157 where the drop in sharpness happens. The blurred frames are detected
and can be removed from the sequence before further processing.

Another example deals with video from content providers. DW’s DailyDrone video of the
Bauhausuniversität in Weimar was recorded during a cloudy day, which leads to longer
opening times of the camera in order to capture enough light. However, longer opening
times and sudden motions lead to motion blur, causing sudden drops in the sharpness
value. This is apparent from the sharpness curve in Figure 10. The sudden drops in this plot
all correspond to blurry frames, an example of which is shown in Figure 11 and Figure 12.

Figure 10: Sharpness of DW’s Daily Drone video of the Bauhaus in Weimar. Several sudden
drops indicate blurry frames, caused by motion blur.

Figure 11: Consecutive frames 1017 and 1018 from DW’s Bauhaus video, where a sudden
drop in sharpness was detected. The right image is blurred.

D4.3 – V1.5

Page 25

Figure 12: Cut out details of frames 1017 and 1018, showing a sudden motion blur.

An alternative approach also makes use of the image content but, instead of using a global
value as in Equation 3, makes use of the results of a feature detection algorithm. The
detector we look for must adhere to the following specifications:

 It must be a very efficient detector, because the detection of blurry frames is only a
pre-processing step, must be performed for all frames and therefore should be
concluded as quickly as possible.

 It should be a detector that focuses on local intensity changes. This rules out
detectors such as SIFT or SURF because these typically extract blob-like features,
spanning areas with continuous intensity.

 It should be a detector that allows for many features in the same neighbourhood and
should therefore not suppress multiple detections in small areas.

Based on the above specifications we chose the FAST (Rosten, 2010) detector, an algorithm
proposed by Edward Rosten.

D4.3 – V1.5

Page 26

Figure 13: FAST feature detection algorithm (Rosten, 2010)

The algorithm (shown in Figure 13) starts from the premise that a pixel p is a corner feature
if there exists a set of n contiguous pixels in the circle (of 16 pixels) which are all brighter
than I(p)+t, or all darker than I(p)-t (with t a given threshold). The algorithm speeds up the
test by examining only the four pixels at 1, 9, 5 and 13. If p is a corner, then at least three of
these must all be brighter than I(p)+t or darker than I(p)-t. The full segment test criterion can
then be applied to the passed candidates by examining all pixels in the circle. This algorithm
clearly uses local intensity information and is very efficient: it reaches speeds of 10fps or
higher. The third requirement is achieved by omitting the standard non-maximal
suppression step that typically follows the algorithm to select the best feature amongst its
neighbours in a region. The result is a detector for which the number of detected features is
a very good indication of the blurriness of the image, especially compared to neighbouring
frames.

An example is shown below. Figure 14 shows the detected features in a frame of the
Bauhausuniversität video from DW. It is clear they are located on local intensity gradient
maxima. Figure 15 shows a graph of the number of detected FAST features for the entire
video sequence. We clearly detect significant drops that correspond to the drops in Figure
10 but are sometimes more outspoken. Figure 16 shows frame 484 where such a drop
occurs. It clearly suffers from motion blur.

D4.3 – V1.5

Page 27

Figure 14: Extracted FAST features in frame 1356 of the Bauhausuniversität video

Figure 15: FAST Feature detection yields a measure of sharpness for every frame.

D4.3 – V1.5

Page 28

Figure 16: Frame with plenty of motion blur, detected by the blurriness algorithm, based on
the FAST feature extractor.

4.4 Image and video sequence analysis and keyframe selection

4.4.1 Video and photogrammetric reconstruction

Video recordings yield image sequences with frame rates of 25 (PAL) or 30 (NTSC) frames per
second. If the video camera does not move at very high speed (which would cause blurring
effects anyway, more on which was written in paragraph 4.3) this means that consecutive
video frames are typically very close together and thus very much alike. This gives us an
important advantage for the computation of matching points between images because such
points are typically located close to the coordinates in the previous image and very little
distortion has to be dealt with. This makes it possible to either limit the search range for
matching points or to employ a different strategy in which we track features rather than
match them. Both strategies are valid and fast because we can make use of features that can
be extracted efficiently, such as FAST-features for matching or KLT-features (Shi, 1994) for
tracking.

Figure 17: Two consecutive frames of the video sequence Bauhaus from DW

D4.3 – V1.5

Page 29

Unfortunately, the fact that consecutive images are so similar also has its drawbacks. Inspect
Figure 17. This figure shows two consecutive frames of a video sequence of Deutsche
Welle’s Daily Drone video, depicting part the Bauhaus. If we attempt to compute the
epipolar geometry between these images we notice that this process is very sensitive to
noise.

Figure 18: Two possible solutions to the Fundamental Matrix that are equally valid. The
yellow lines show the epipolar lines indicating the camera movement.

Two possible solutions of the epipolar geometry are shown in Figure 18 and both are equally
valid. To verify this, inspect the easily identifiable points through which the epipolar lines go
(for instance: corner of a building, intersection on the pavement, …) and verify that the
corresponding point in the other image lies on the corresponding epipolar line. This is the
case for both solutions of the epipolar geometry, even though they differ very much. The
images shown in this figure depict a scene with plenty of 3D information. Yet we cannot
compute the epipolar geometry stably because of the small baseline: the two camera
centres are too close together, so the translation between the cameras is very small. This
means that the camera setup resembles that of a purely rotating camera and hence the
relation between corresponding pixels can also be explained by a homography as shown in
Figure 19.

D4.3 – V1.5

Page 30

Figure 19: The motion between the consecutive frames can be explained by a homography.

The computation of epipolar geometry breaks down if images are too close together. The
same is true for projective camera estimation where newly computed 3D points and
cameras suffer from large uncertainties due to the small baseline between cameras. This
means we have to find a technique to increase the baseline between images that are used
for structure-and-motion recovery. A possible solution is not to deal with consecutive
images but to select every n-th frame of the video sequence. This is not a good idea because
it is impossible to choose a value of for n that will work for all video sequences. It would
depend on the velocity of the camera, the frame rate and the distance to the scene. These
properties could even change during the recording of the video. Imagine a camera filming a
scene, standing still every once in a while and then continuing. The value of n would have to
be adapted constantly. A possible solution for this makes use of the concept of the
Geometric Robust Information Criterion (GRIC), introduced by Torr (Torr, 1997).

4.4.2 GRIC

The concept of GRIC was introduced to solve a particular problem: how can we find out if a
certain scene is dominantly planar and does this have an impact when computing the
epipolar geometry of an image pair depicting such a scene? In this case, the transformation
between the images can be described by a general projective transformation, modeled via a
homography H. Since every point correspondence yields 2 equations (one in x and one in y),
only 4 points are needed to compute H. All other correspondences can be predicted from
these 4. This would suggest that only 4 independent point matches can be used to compute
F but it is known (Hartley, 2004) that we need at least 7 correspondences. This means that
there are 3 DOF in F we cannot determine without information of points outside the plane. If
no such points are available, these remaining DOF are filled by noise on the extracted
features.

A similar situation arises when the baseline between two images (of any scene) is small,
because this situation resembles a setup with a purely rotating camera, which can also be
described with a homography. The top and bottom image-pairs of Figure 18 depict the same
images but with a different fundamental matrix. Both matrices were computed with the
same RANSAC algorithm. The only difference is a small perturbation on one of the
parameters (i.e. the outlier distance which was changed from 2 to 2.2 pixels). The resulting
F-matrices are quite different which is apparent from the epipolar lines. If one compares the
epipolar lines in any of the image pairs however, points on corresponding lines are always in
correspondence. This means that both solutions are equally valid and no claim can be made

D4.3 – V1.5

Page 31

as to the quality of the result. One can intuitively understand this as follows. Take an
arbitrary pencil of lines in one image. If a homography describes the relation between the
two images, then every line can be transformed to the other image and all points on the line
in the first image will lie on the transformed line in the other.

A first step in solving the small baselines problem is the ability to detect this situation. Since
such images can be transformed into each other via a homography, one could compute such
H matrix and inspect the residual error. If this error is below a threshold, one could consider
the baseline to be too small. However, it is unclear which value one should choose for this
threshold. A better and more stable approach is to take into account not only the residual
error but also the degrees of freedom. This can be done by computing and comparing values
of the Geometric Robust Information Criterion for different models.

The problem of determining whether the baseline between images is too small, based on
correspondences between these images is a specific example of a more general problem,
which can be stated as follows. If one has a data-set and different models that can explain
the data, then which model should one choose? Already in the middle ages a Franciscan friar
called William of Ockham (Arriew, 1976) shed some light on this. His theory, known as
Occam’s Razor states:

One should not increase, beyond what is necessary, the number of entities required to
explain anything.

In essence this theory means that if two or more theories explain the observations equally
well, one should always choose the simplest one. For the case of multiple view geometry,
Torr proposed a mathematical description of this principle that is completely general, based
on Akaike’s information criterion (Akaike, 1974) and Rissanen’s minimum description length
(Rissanen, 1978). It calculates a score function for each model taking into account the
number of inliers, outliers, the residuals, the standard deviation of the error, the
dimensionality of the data, the number of the parameters and dimensionality of the model.
The general formula is given by Equation 4

𝐺𝑅𝐼𝐶 = ∑ 𝜌(𝑒𝑖
2) + (𝑛𝑑 ln(𝑟) + 𝑘 ln(𝑟𝑛))

𝜌(𝑒𝑖
2) = min (

𝑒𝑖
2

𝜎2
, 2(𝑟 − 𝑑))

Equation 4: Geometric Robust Information Criterion

In which

 𝑛 is the number of data (inliers + outliers)

 𝑒𝑖 is the residual for every correspondence 𝑖. For a homography H for instance this is
the distance between point m2 and the transformed corresponding point Hm1:

𝑒𝑖 = 𝐷(H𝑚1, 𝑚2) + 𝐷(𝐻−1𝑚2, 𝑚1)
For a fundamental matrix F the error is computed as the sum of the distances to the
epipolar lines:

𝑒𝑖 = 𝐷(𝑙2=F𝑚1, 𝑚2) + 𝐷(𝑙1=𝐹𝑇𝑚2, 𝑚1)
 𝜎 is the standard deviation on the measurement error.

 𝑟 is the dimensionality of the data or the amount of observations. In the case of 2
views, 𝑟 is 4 (two times two coordinates).

D4.3 – V1.5

Page 32

 𝑘 is the number of model parameters. For a homography 𝑘 is 8, for a fundamental
matrix it is 7. For an essential matrix it is 5.

Inspecting Equation 4 we clearly identify two parts. The first part is the goodness of the fit.
How well does a model describe the data? This is given by the residual error of the
corresponding matches. Of course, this residual alone does not suffice since a complicated
model that contains a simpler model always explains the data better since it has more
degrees of freedom. In the case of a small baseline for instance, the 3 remaining degrees of
freedom of a computed fundamental matrix are estimated from noise in the data, allowing
for a lower residual score.

That is why the GRIC model has a second part 𝑛𝑑 ln(𝑟) + 𝑘 ln(𝑟𝑛) which takes into account
the so called parsimony of the model. This means that the more complex a model is, the
higher this penalty term will become. If we want to choose a more complex model over a
simpler one, it should explain the data much better, to the extent that its residual error
should be so much lower than the residual error of the simpler model that this reduction
nullifies the extra cost associated with the higher complexity.

Let us apply this algorithm to the problem of a pair of images with a small baseline. We
execute the following algorithm.

 Compute the fundamental matrix between the two images, as well as the inliers and
outliers using F-RANSAC.

 Compute a non-linear optimization of F using the inliers only, e.g. with a MLE
(Maximum Likelihood Estimator) (Aldrich, 1997)

 Compute a planar homography matrix H.

 Compute H-GRIC and F-GRIC with Equation 4 using all the inliers of F. The latter is
absolutely necessary because if only inliers for H are used to compute it, the H-GRIC
value will always be lower than the F-GRIC because of its lower complexity.

 Compare both GRIC values. If H-GRIC is lower than F-GRIC, then the preferred model
to explain the data should be H. If the F-GRIC value is lower, then there was sufficient
camera motion to compute the F-matrix correctly.

4.4.3 Selecting keyframes

We can employ the GRIC algorithm, explained above, to solve the problem of selecting the
optimal frames in a video sequence for photogrammetric reconstruction. To do so we
introduce the concept of keyframes. We select the first frame in the sequence as the first
keyframe and track features to the second frame. We estimate the fundamental matrix and
a homography between these frames and compute the corresponding F-GRIC and H-GRIC
values. If the H-GRIC is lower than F-GRIC, the homography describes the data better than F
and we track the features to the next frame in the sequence where we perform the same
process now between the first and the third frame. As long as the H-GRIC is lower, we
continue to advance in the sequence. Once the F-GRIC yields the lowest penalty, the
epipolar geometry can be reliably estimated and we could select the frame where this
happens as the new keyframe. Note: in case the internal camera calibration parameters are
known (or can be reliably estimated), the essential matrix E can be computed instead of the
fundamental matrix F, which can avoid problems with certain degenerate cases.

D4.3 – V1.5

Page 33

However, in order to reduce the processing time of the photogrammetric camera estimation
and the dense matching, we might want to progress a little further in the sequence. For
every frame we track the features and estimate epipolar geometry w.r.t. the previous
keyframe. While more than 90% of the inliers at the crossing-point are still matched, we
continue. When we drop under this 90%, we select this frame as the new keyframe.

4.4.4 Detecting degenerate sequences

Deliverable D4.1 (Empirical study of visual content) described in detail how sequences with
degenerate motion types are not suitable for 3D reconstruction. The most common of these
are movies with a pure rotation around the optical center, so-called panorama sequences.
Since there is no baseline between the frames, it is mathematically impossible to extract 3D
information from these sequences photogrammetrically. However, it was also shown in D4.1
that these sequences are quite common, especially in older material. The content from the
content providers in V4Design also contains several examples of such data. It would be
beneficial if we could detect such unsuitable movies early and notify the user. This can be
achieved with the same GRIC-based algorithm described above! The relation between
images in panorama sequences can mathematically be described by a homography: this 2D
projective transformation suffices to capture the change from one panorama image to
another. Since the parsimony of the homography model is lower than that of a fundamental
matrix (corresponding to 3D motion), the homography will be chosen for all images in a
panorama. If no turning point between H- and F-GRIC is detected (i.e. the H-GRIC is always
lower), we can deduce that the camera underwent a panorama-like rotation and that the
movie is unsuitable for 3D reconstruction.

4.5 Implementation and examples

Commercial as well as open source photogrammetric solutions primarily focus on processing
images, rather than videos. The V4Design project also wants to reconstruct 3D models from
video sequences from a wide variety of sources. When dealing with video, photogrammetric
packages typically instruct the user to extract every nth frame and feed the resulting images
to the reconstruction algorithms. We already showed earlier in this chapter that this is not a
good solution.

4.5.1 Implementation

The implementation in the V4Design pipeline combines the different building blocks that
were discussed in D4.1 and in this deliverable. It follows the pipeline depicted in Figure 20.
In a first stage, the video is split into different shots, using the shot-detection algorithms of
paragraph 4.2. This ensures that no hard cuts are present in the video to be processed.
Secondly, the separate shots are fed to a block that analyses the sharpness of the
consecutive video frames, as discussed in paragraph 4.3. Only frames that are clearly blurry,
i.e. showing a clear drop in sharpness, are flagged and eliminated from the remainder of the
processing pipeline. The next step then deals with the extraction of suitable keyframes that
can be fed to the photogrammetric algorithms.

D4.3 – V1.5

Page 34

Figure 20: Video handling pipeline

Figure 21: Detailed keyframe extraction

D4.3 – V1.5

Page 35

This extraction follows the logic described in paragraph 4.4. The procedure is depicted in
Figure 21. It employs a tracking strategy, rather than a matching strategy, in which we
exploit the fact that consecutive video frames are typically very close together. The selection
procedure is based on the GRIC score, in the sense that a new keyframe is only selected
when there has been sufficient camera motion. In order not to limit the number of
keyframes, we keep tracking the features and select a new keyframe when the number of
tracked features falls below 90%. Two additions to this basic strategy are also implemented.
First, if we notice a sudden drop in tracked features from frame n to frame n+1, we check
the local sharpness score. In many videos such lower sharpness is due to motion blur, which
typically lasts for several frames and hence might not detected in the blurriness detector. If
frame n+1, or its k successors, show a significantly lower sharpness than frame n and frame
n+k, we attempt to track the features from frame n to frame n+k in order to overcome the
blurry part of the video.

A second addition is the detection of degenerate motion. As described in paragraph 4.4.4, a
pure rotation (panorama recording) is not suitable for 3D reconstruction. However, if this
panorama-shot is short and is preceded and followed by actual camera motion,
photogrammetric pipelines are able to deal with this, by reconstructing the preceding and
following parts in 3D and estimating the panorama cameras afterwards. That is why we
implemented an algorithm that is shown as part of Figure 21. The tracked features are fed to
the keyframe selection algorithm as explained above. If the video only contains a panorama,
no frame will be found where the F-GRIC-score is lower than the H-GRIC score. Such videos
are automatically flagged. When we do find a crossing point between the GRICs (indicating a
3D motion), we compare the number of tracks to the features extracted in the previous
keyframe. If this is above a certain threshold (currently set at 50%), we accept the new
keyframe. Even in the case of a short intermediate panorama, the photogrammetric pipeline
will still be able to reconstruct the scene. If the number of tracks falls below the threshold,
we decide that this panorama part is too large for the 3D reconstruction to succeed.

4.5.2 Bauhaus - Dessau example

The first example we will discuss is from a Daily Drone video from content provider Deutsche
Welle. It depicts the Bauhaus in Dessau, Germany. The video is about 1 minute long (1548
frames) and contains several pauses as is clearly shown in Figure 22, which depicts every 10th
frame of the video. A simple strategy to extract every nth frame of this video is doomed to
fail.

The first operation we employ is a shotcut detection. In this case, the video consists of a
single shot, which is subsequently fed to the module responsible for computation and
analysis of the sharpness of the video. The result is shown in Figure 23. Several frames show
a sudden drop in sharpness, indication of blurriness. This for instance the case for frame 32,
depicted in Figure 24.

This information is now sent to the actual keyframe extraction algorithm. This procedure,
explained above, first computes the tipping point where the H-GRIC score exceeds the F-
GRIC score, indicating the point where the 3D motion of the camera is too large to describe
the resulting images with a homography. From that point on, we keep tracking the features
until less than 90% survives, at which point we select a new keyframe. Figure 25 shows an
example around frame 750.

D4.3 – V1.5

Page 36

Figure 22: Every 10th frame of the Bauhaus video from Deutsche Welle

Figure 23: Sharpness of the Bauhaus video, showing several blurry frames

D4.3 – V1.5

Page 37

Figure 24: Blurry frame, detected at frame 32

Figure 25: F-GRIC (red) and H-GRIC (blue) score around frame 750

The previously extracted keyframe is frame 725. When features are tracked and GRIC scores
are computed, the H-GRIC score is lower than the F-GRIC at first, indicating little motion. At
frame 754 we see the tipping point where H-GRIC > F-GRIC. These two frames are shown in

HGRIC > FGRIC

tracks < 90%

D4.3 – V1.5

Page 38

Figure 26. Note that especially the foreground (ground) differs and that there is parallax
between the front wall and the buildings in the background, which is an indication of 3D
information and motion. However, frame 754 is still rather close to 725 and we could
probably skip more frames without jeopardizing the 3D reconstruction. Therefore we
continue to track until 10% of the tracks of 757 have disappeared. This happens at frame
782, which is selected as the new keyframe. In the end, the algorithm extracted 27
keyframes, shown in Figure 27.

Figure 26: Tipping point: H-GRIC > F-GRIC at frame 754

D4.3 – V1.5

Page 39

Figure 27: Selected keyframes for the Bauhaus video

These keyframes are fed to the 3D reconstruction algorithm. The result is shown in Figure
28.

Figure 28: Resulting 3D model from the keyframes of the Bauhaus video

4.5.3 Kochuu: example of panorama

A second example we will describe shows the result on a video with a degenerate motion
sequence. The video Kochuu from Solaris Film Productions contains several shots that might
be of interest to V4Design users, but that are, unfortunately, not suitable for 3D

D4.3 – V1.5

Page 40

reconstruction purposes. An example of such is shown in Figure 30 where we depict every
10th frame of the shot. The movie shows a built structure around a pond. The camera rotates
on the spot and hence performs a panorama motion, unsuitable for 3D reconstruction.

Figure 29: H-GRIC (blue) and F-GRIC (red) of the panorama shot of Kochuu.

D4.3 – V1.5

Page 41

Figure 30: Every 10th frame of a shot in the movie Kochuu from SfP

The keyframes module computes and compares the H- and F-GRIC. Results of this are shown
in Figure 29. Because the motion is degenerate, the algorithm should always prefer the H-
model over the F-model because it is less complex. This expected result is indeed achieved,
because the H-GRIC value always lies below the F-GRIC. Note that the absolute value of both
GRICs steadily decreases because the number of tracked features decreases as well: indeed,
at the end of the shot, no more features are present that were visible in the first frame. This
indicates that this shot is unsuitable for 3D reconstruction.

D4.3 – V1.5

Page 42

5 3D RECONSTRUCTION: IMPLEMENTATION AND COMPARISON OF
PHOTOGRAMMETRIC RECONSTRUCTION SOLUTIONS

The following chapter describes the State-of-the-Art of available photogrammetric software.
The goal is to investigate whether existing components can be used to extend the State-of-
the-Art. An empirical study is conducted with realistic data from V4Design to evaluate the
different steps of the reconstruction pipeline of each software package.

5.1 General overview

Several photogrammetric software packages are available, ranging from semi-automated to
fully automated procedures. This study focuses on the evaluation of methods that fully-
automatically produce point cloud data, mesh geometry and high quality textures. More
specifically, the emphasis of the work is on determining the best-fit methods to process the
raw imagery and videos discussed in Deliverable 4.1 to a set of 3D outputs. This includes the
reconstruction of objects and buildings from both close-range and oblique imagery.

5.1.1 Software

Both Open source software as well as commercial applications are considered. While
numerous photogrammetric libraries and software exist, it suffices to evaluate only the best
performing solutions from the industry and the academic community. The selection was
limited to general-purpose reconstruction pipelines as the raw imagery and videos can
originate from varying sources. For the evaluation of the commercial software Metashape
(Agisoft, 2018), RealityCapture (CapturingReality, 2016) and 3DF Zephyr (3Dflow, 2014) are
selected based on their performance. Another popular software, Pix4D (Pix4D, 2011), was
not evaluated as it does not support command line interfacing which is necessary for the
integration of the 3D reconstruction in the V4Design pipeline. For the evaluation of the Open
source software, COLMAP (Schönberger et al., 2016) and Meshroom (AliceVision, 2019) are
considered.

5.2 In-depth comparison of software tools and libraries

In this section, the advantages and disadvantages of the tools in the available software are
discussed. More specifically, the opportunities are discussed to integrate functionalities of
the different software into the V4Design reconstruction pipeline.

Table 3: Overview user adjustable tools of the evaluated photogrammetric software.

 V
id

eo
 Im

p
o

rt

A
d

ju
st

 F
ea

tu
re

Ex
tr

ac
ti

o
n

A
d

ju
st

 C
am

er
a

M
o

d
el

A
d

ju
st

M
at

ch
in

g

M
et

h
o

d

A
llo

w
 M

as
ki

n
g

A
d

ju
st

 B
u

n
d

le

A
d

ju
st

m
en

t

A
llo

w

Se
gm

e
n

ta
ti

o
n

Fi
lt

er
in

g

fu
n

ct
io

n
s

G
C

P

in
te

gr
at

io
n

B
at

ch

P
ro

ce
ss

in
g

MetaShape + - + + + - + + + +

3D Zephyr + - - + + + + + + +

RealityCapture + - + + - + - - - +

COLMAP - - + + - + - - - +

Meshroom - + - + - + - - - +

D4.3 – V1.5

Page 43

5.2.1 List and details of compared tools

An initial comparison between the software is in their basic functionalities and parameter
accessibility. Figure 31 depicts a set of useful functionalities to the reconstruction pipeline.
For instance, batch processing is a necessity since the V4Design procedure will be
simultaneously used by numerous users and content providers. The reconstruction box,
masking and filtering capabilities reduce outliers and mitigate noise. The ability to influence
feature extraction, camera models, matching methods, bundle adjustments and integration
of Ground Control points is essential to produce proper models from the high variance data
inputs from the content providers.

Table 3 depicts the ability of each software package to influence the respective parameters.
As expected, do the commercial applications embody significantly more functions than their
Open source counterparts. However, the Open source solutions allow more parameters to
be influenced by the user. An interesting aspect is that some of the functionalities of
Meshroom and COLMAP are complementary. This is especially useful for the V4Design 3D
reconstruction pipeline since functions from both libraries can be combined to extend the
current State-of-the-Art. The separate functions of the SfM pipeline are further investigated
in the following sections to evaluate which code can be applied to the V4Design project.

5.2.2 List and details of compared methods

The functions of each software package are evaluated for the subsequent steps in a general-
purpose SfM pipeline (Table 1). This includes the feature extraction, matching, alignment,
dense reconstruction, meshing and texturing as discussed in paragraph 3. These functions
are dependent on the type of SfM that is being employed. As previously stated, incremental
SfM’s are very popular. Typically, the iterative process is initialized by aligning as many
images as possible in a graph followed by a geometric verification. The resulting scene graph
is used to start the reconstruction. Incrementally, a two-view reconstruction is selected, new
images are registered, new scene points are triangulated and outliers are filtered. At the end
of each iteration, the reconstruction is refined by updating the bundle block adjustment.
Alternatively, global reconstructions are also presented. In this strategy, images are matched
pairwise and the essential matrix is computed, from which the relative orientation can be
derived. These orientations are then matched throughout the entire image set. Both
COLMAP, RealityCapture and 3DF Zephyr implement this approach, which allows them to
process a wide variety of image sequences.

Figure 31: COLMAP’s incremental Structure-from-Motion pipeline (COLMAP, 2016)

D4.3 – V1.5

Page 44

Table 1: Overview functions of the evaluated Photogrammetric software. Functions of
commercial software are often unknown.

 Ty
p

e
p

ip
el

in
e

Fe
at

u
re

Ex
tr

ac
ti

o
n

Fe
at

u
re

M
at

ch
in

g

Im
ag

e
Ex

te
ri

o
r

O
ri

en
ta

ti
o

n

Tr
ia

n
gu

la
ti

o
n

B
u

n
d

le

A
d

ju
st

m
en

t

R
o

b
u

st

Es
ti

m
at

io
n

MetaShape Incremental - - - - - -

3D Zephyr Incremental/Global DoG
Based

Sequential
Circular
Unordered
Approximate
Grid

P3P
DLT

Linear LS - MSAC

RealityCaptre - - - - - - -

COLMAP Incremental SIFT Exhaustive
Sequential
Vocabulary
Tree
Spatial
Transitive

P3P Sampling
–based
DLT

Ceres
Solver

RANSAC
PROSAC
LO-
RANSAC

Meshroom Incremental SIFT
AKAZE
CCTAG

ANN
Cascade
Hashing
Brute Force
Vocabulary
Tree

P3P DLT Ceres
Solver

RANSAC
ACRANSAC
LO-
RANSAC

Feature extraction
The extraction and matching of proper features is crucial in any SfM pipeline. Most software
packages currently employ Scale-Invariant Feature Transformation (SIFT) (Lowe, 2004) for
their descriptor estimation. This descriptor has certainly proven its worth and is considered
very robust and efficient in matching imagery even with limited overlap. For instance,
COLMAP implements SIFT as does Alicevision Meshroom. Several alternatives are discussed
in the literature in paragraph 3.2.1 such as SURF, SHOT, DAISY and so on. 3DF Zephyr
Implements their own descriptor based on Difference of Gaussians (DoG). Meshroom also
provides libraries for CCtag and AKAZE descriptors. As expected with commercial software,
there is limited information on the exact inner workings of the algorithms involved. Overall,
numerous descriptors are capably of robustly encoding a set of input imagery. Therefore, in
the V4Design project, we will use one of the existing descriptors and implement it into our
own reconstruction pipeline.

Feature Matching

Closely aligned to the feature extraction is the matching of the feature vectors. This involves
retrieving the correct correspondence for as many features as possible in an efficient
manner. Not only does this include matching the proper descriptors but also selecting
suitable image pairs to reduce the number of computations. However, the optimal selection
method differs for varying image sequences. For instance, sequential methods implemented

D4.3 – V1.5

Page 45

by 3DF Zephyr and RealityCapture specifically target subsequent images such as the frames
extracted from videos. This is very efficient since the number of matches to be evaluated is
equal to the dimensionality of O(n) compared to brute force methods that only have a
computational efficiency of O(n²). Aside from the obvious choice for video sequences, the
V4Design project requires a more versatile image selection. This is especially true for the
results from the crawling unit developed by CERTH. These images are typically randomly
organized, have little overlap and suffer from poor image quality in terms of
photogrammetric compatibility as they were often taken with a different purpose at a
different time period. Numerous solutions have been presented in the literature to tackle
these random datasets. Table 1 shows several implementations of popular methods. For
instance, Meshroom and COLMAP also offer vocabulary Trees for efficient pair estimation.
Once a set of images is determined, the sets of feature vectors are compared to determine a
match. Similar to the image selection, the combination possibilities should be limited as
much as possible. Typically, a variant of the RANSAC algorithm is used in order to deal with
and eliminate erroneous matches and outliers.

Alignment
The alignment for images in an incremental SfM and a global SfM is different. The former
starts with a two-pair reconstruction and iteratively extends the alignment. The latter
considers the entire image batch for the bundle block adjustment and computes the exterior
orientation of all images at once. Separate algorithms are developed for both approaches.
Typically, incremental solutions employ P3P for aligning new images which is the case for
Meshroom, COLMAP and 3DF Zephyr. Alternatively, 3DF Zephyr also implements the DLT
algorithm for their global SfM pipeline. Both approaches typically perform an alignment
optimization. Global SfM only optimizes once with the entire batch while incremental SfM
iteratively computes smaller bundle adjustments. Both optimizations have the same
mathematical representation and thus algorithms are shared across pipelines. A popular
solver based on Levenberg-Marquardt is the Ceres Solver. A prominent factor in incremental
SfM is the size of the bundle adjustment that is considered during each iteration. Early
versions optimized for the entire aligned batch which leads to computational complexity of
O(n!) which is suboptimal. Recent methods only consider a subset, significantly increasing
the methods efficiency rendering it a viable option compared to global methods. However,
sparse subsets lead to drift which reduces global accuracy. Therefore, incremental methods
will often perform an intermediate global bundle adjustment if the cluster has sufficiently
expanded as is the case in COLMAP. In V4Design, regular bundle adjustments are mandatory
since overlap between the input imagery is low and the alignments often uncertain.

Dense Reconstruction
Once the images are aligned, photogrammetric pipelines produce depth maps and fuse them
to compute dense point clouds. This is a memory intensive procedure that accounts for a
significant portion of the total computation time. Global methods implemented in
RealityCapture and 3DF Zephyr are faster overall but can struggle with larger datasets since
the dense point cloud is simultaneously computed for all the depth maps. Therefore, the
incremental methods embedded in MetaShape, COLMAP and Meshroom are preferred.
Depth maps are computed and fused during each iteration of the process after the bundle
adjustment. While the methods for computing depth maps and fusion are similar for the

D4.3 – V1.5

Page 46

evaluated software, their parameters and accessibility are not. The efficiency of dense point
cloud generation is significantly influenced by the number of input images, the choice of
filtering algorithms and whether or not the point cloud is kept in memory during subsequent
iterations. It is important in the V4Design pipeline that these parameters can be accessed
and dynamically set to suitable values to retrieve proper results from whatever images are
crawled from the databases.

Meshing
After the computation of the dense point cloud, the resulting points are used to compute a
mesh. Several triangulation and meshing methods are available in literature and the
evaluated software. For instance, Meshroom and COLMAP respectively use the DLT and
sampling-based DLT methods. Alternatively, 3DF Zephyr employs Linear LS which shows
promising results. Similar to the dense reconstruction, the performance of these methods is
significantly influenced by the size of the inputs. Also, subsampling drastically improves
efficiency but reduces the accuracy. A vital aspect in the implementation of these methods is
the availability of parallel processing and GPU integration. All commercial software are
heavily optimized, resulting in fast reconstruction algorithms. The Open source software
packages do this to a lesser extent but also target the efficiency of the methods themselves.
Overall, it is stated that the V4Design pipeline requires both efficient methods and proper
CPU and GPU integration which are suited to run on cloud services in order to retrieve the
most optimal triangulation.

Texturing
A major advantage of photogrammetric methods is the possibility to compute high quality
textures for the 3D models. This is possible because the 3D geometry is actually derived from
the images, so the link between the geometry and the texture is readily available. The
reprojection of the imagery onto the mesh to retrieve high quality textures is vital to the
V4Design outputs. Aside from the high quality textures that are extracted from recent
imagery, it should also be possible to replace the aesthetics with user defined textures.
Furthermore, it is within the scope of “Reliving the past” to map textures from the past
(PUC4). In order to do this, imagery from different time periods should be matched together.
Given a set of properly aligned images, the reprojection of the pixel information to UV maps
can be computed using the homography between the mesh and the initial image. This is a
fairly standard procedure present in all software that is mainly driven by parameters such as
the target texel size and the choice of images that are best suited for texturing.

Overall, it is stated that the State-of-the-Art can be best extended by combining the best
performing methods from the different software solutions. Each software package has its
pros and cons in terms of functionality, efficiency and performance. However, it is
challenging to theoretically determine which components are best suited to deal with the
wide variety of imagery in the V4Design project. Therefore, practical tests are required to
empirically determine the best suited methods.

5.3 Experiments

In this paragraph, the reconstruction pipeline of each software package is tested on its
efficiency and quality. Also, the software’s ability to match images from different time

D4.3 – V1.5

Page 47

periods is taken into account. The intermediate results of each step of the reconstruction
process are observed including the sparse reconstruction, the dense reconstruction and the
final model creation along with the high quality textures. The evaluation itself is performed
in two steps. First, an overall evaluation is performed of the intermediate outputs with
respect to the processing time. Secondly, each step is investigated with more detail in terms
of quality and accuracy. Several realistic test cases are presented in order to determine the
best suited methods for the V4Design project.

5.3.1 Datasets

The datasets are selected in such a way that they represent the variety of input data in the
V4Design project. Also, the image sequences pose significant challenges to photogrammetric
process. More specifically, both imagery extracted from videos and unordered images are
processed to evaluate the performance of the different algorithms. Four test cases are
presented that vary in scale, detailing, image quality and capturing method. In the following
paragraph, each data set is discussed in detail along with the difficulties it imposes for the
3D reconstruction pipeline.

Dataset 1: Schiller Monument

The first data set is a video sequence of the Schiller Monument on the Gendarmenmarkt,
Berlin (Figure 32). A 2 min video fragment was captured with an unknown device at 25fps on
the 23th of May 2018 by a tourist visiting the square. The video shows the statue from
different points of view as the tourist slowly walks around the statue. 464 frames were
extracted from the video. Overall, this is a fairly good test as there inherently is significant
overlap between the imagery. It is therefore expected that the alignment by the different
software will yield proper results. However, the video is taken at pedestrian height and other
tourists are walking in front of the target object causing occlusions. Also, the textures are
suboptimal as the lighting conditions change as the tourist walk around the statue, there is
little texture on the statue itself and there is a lot of shading. Furthermore, the degree of
lens distortion will certainly affect the reconstruction accuracy.

D4.3 – V1.5

Page 48

Figure 32: Schiller Monument, Gendarmenmarkt, Berlin

D4.3 – V1.5

Page 49

Dataset 2: Technology campus Ghent
The second data set is a video fragment of the Technology campus Ghent, Belgium (Figure
33). It is a 8min drone flight at 59fps of the campus grounds captured with a DJI Phantom
4Pro operated by a pilot in training on the 24th of December 2017. 475 frames were
extracted from the video. Similar to the first test case, the overlap is inherently high.
However, the flightpath is more arbitrary due to the pilot’s training exercise. Also, the flight
was conducted when the campus was covered in snow, causing reflections and poor
textures. Overall, it is expected that the reconstruction process will yield proper results of
the grounds and the surrounding buildings.

Figure 33: Dataset 2, Technology campus Ghent

Dataset 3: Gendarmenmarkt

The third dataset is a data dump from the crawling unit developed by CERTH. It contains 993
images of the Gendarmenmarkt, Berlin. It is a representative case for the type of imagery
the V4Design project is looking to use. However, there are significant challenges for the 3D
reconstruction pipeline. First of all, the imagery originates from different sources, time
periods and were captured both during the day and night (Figure 34). Numerous images are
irrelevant, showing only fragments of the scene or simply pictures that were semantically
linked to the Gendarmenmarkt. Most images are also artistic including special lighting
effects and selfies. On top of that, the quality of the usable imagery is poor and heavily
distorted. It is expected that the 3D reconstruction based on this imagery will be challenging
if not impossible. However, it is vital to evaluate which software components are capable of
dealing with this sort of data.

D4.3 – V1.5

Page 50

Figure 34: Dataset 3, image results of the crawling of the Gendarmenmarkt, Berlin. The
bottom left image originates from 1955, the bottom centre image from 1988, and the

bottom right image from 2005.

Dataset 4: Brandenburger Gate

The fourth dataset is another data dump from the crawling unit. It contains 991 arbitrary
images of the Brandenburger Gate, Berlin (Figure 35). Similar to the Gendarmenmarkt, this
monument has been thoroughly documented throughout history, resulting in a wide variety
of images. The same challenges occur as most images are unsuited for photogrammetric
purposes. However, there is a distinct difference between the image set of the
Gendarmenmarkt and the Brandenburger Gate: at the market, the scene of interest lies at
the edges of the market, and thus, most images are captured pointing outwards. This causes
issues in the 3D reconstruction pipeline since a minimal baseline is required for multi-view
reconstruction. With the Brandenburger Gate, the scene of interest lies at the center, and
thus most images are captured pointing towards the center of the scene. This is a preferable
photogrammetric setup and thus it is expected that despite the shortcomings of the
imagery, the Brandenburger Gate will yield adequate results, provided that the images from
different time periods can be matched.

D4.3 – V1.5

Page 51

Figure 35: Dataset 4, image results of the crawling of the Brandenburgate, Berlin. The
bottom left image depicts an image at MiniEuropa, the bottom centre is an artistic image

captured in the evening and the bottom right image dates from 1955.

D4.3 – V1.5

Page 52

5.3.2 Overall test results

Table 4: Intermediate 3D Reconstruction results of the four test cases with their respective processing time

A
lig

n
e

d

im
ag

e
s

R
e

p
ro

je
ct

io
n

Er
ro

r
[p

ix
]

Sp
ar

se
 p

o
in

t

cl
o

u
d

C
o

m
p

u
ta

ti
o

n
 t

im
e

D
e

n
se

 P
o

in
t

C
lo

u
d

C
o

m
p

u
ta

ti
o

n
 T

im
e

M
e

sh
in

g

[t
ri

an
gl

e
s]

C
o

m
p

u
ta

ti
o

n
 T

im
e

Te
xt

u
ri

n
g

[%
]

C
o

m
p

u
ta

ti
o

n
 T

im
e

To
ta

l

C
o

m
p

u
ta

ti
o

n
 t

im
e

Schiller
Monument

464

MetaShape 463 0.92 158 032 0:19:21 1 170 169 1:00:31 358 617 0:09:30 100% 0:00:48 1:30:10

3DF Zephyr 464 0.42 54 914 1:07:00 3 912 433 0:46:00 678 891 0:15:00 100% 0:02:30 2:10:30

RealityCapture 464 0.88 492 576 0:04:42 300 442 0:08:31 100% 0:02:02 0:15:15

COLMAP 464 0.94 462 547 0:16:55 10 54 503 5:21:00 - - - - 5:37:55

Meshroom 462 0.65 36 760 0:04:00 2 767 089 2:22:00 541 649 0:08:00 100% 0:01:00 2:35:00

Technology
Campus

475

MetaShape 352 1.07 37 191 0:31:47 1 846 373 1:00:36 804 639 0:12:35 73% 0:01:30 1:46:28

3DF Zephyr 463 0.31 82 159 0:42:00 1 181 614 0:14:17 405 876 0:09:07 86% 0:03:58 1:09:22

RealityCapture 474 0.66 351 585 0:06:48 1 642 194 0:15:29 75% 0:00:58 0:23:15

COLMAP 475 0.61 112 502 0:09:25 2 870 517 1:53:01 - - - - 2:02:26

Meshroom 464 0.51 56 406 0:21:00 3 265 817 0:49:40 2 024 618 0:08:40 79% 0:03:00 1:22:20

D4.3 – V1.5

Page 53

Table 5: Intermediate 3D Reconstruction results of the four test cases with their respective processing time.

A
lig

n
e

d

im
ag

e
s

R
e

p
ro

je
ct

io
n

Er
ro

r
[p

ix
]

Sp
ar

se
 p

o
in

t

cl
o

u
d

C
o

m
p

u
ta

ti
o

n
 t

im
e

D
e

n
se

 P
o

in
t

C
lo

u
d

C
o

m
p

u
ta

ti
o

n
 T

im
e

M
e

sh
in

g

[t
ri

an
gl

e
s]

C
o

m
p

u
ta

ti
o

n
 T

im
e

Te
xt

u
ri

n
g

[%
]

C
o

m
p

u
ta

ti
o

n
 T

im
e

To
ta

l

C
o

m
p

u
ta

ti
o

n
 t

im
e

Gendarmen-
markt

993

MetaShape 278 1344.42 23 952 4:48:50 - - - - - - 4:48:50

3DF Zephyr 283 1.22 16 816 0:33:11 948 963 0:21:55 1 351 715 0:28:06 81% 0:21:50 1:45:02

RealityCapture 290 1.60 42 060 0:16:58 1 050 248 0:21:49 93% 0:13:14 0:52:01

COLMAP 723 0.74 105 893 0:56:22 6 099 431 7:53:00 3 011 079 0:17:05 75% 0:25:59 9:32:26

Meshroom - - - - - - - - - - -

Brandenburger-
poort

991

MetaShape 42 1.38 939 0:20:45 - - - - - - 0:20:45

3DF Zephyr 209 0.27 5 858 0:27:33 960 945 0:03:59 104 774 0:02:07 25% 0:0021 0:33:39

RealityCapture 131 1.08 19 530 0:01:51 439 060 0:08:49 32% 0:00:52 0:11:32

COLMAP 461 0.14 46 310 1:18:33 1 640 873 4:06:08 - - - - 5:24:41

Meshroom 5 0.05 583 12.03.07 - - - - - - -

D4.3 – V1.5

Page 54

As an initial test, the entire 3D reconstruction process is conducted for every test case in
every software package. The 5 packages processed the data and at every step, intermediate
results were saved. As it is impossible to have a uniform set of parameters for the
reconstruction process, each package processed the test cases several times until an optimal
set of settings for that software was established. The parameters were chosen in such a way
that for each test case the number of matched images, the dense point cloud, the mesh
quality and texturing quality were maximized while the processing time was minimized.

Table 4 depicts the results of the processing of the video sequences of the Gendarmenmarkt
and the Campus in Ghent. Basic results are reported for each intermediate step such as the
number of reconstruction points and the reprojection error along with the computation
time. From these values, a superficial evaluation can be performed of each software’s
efficiency which will then be later discussed in detail in paragraph 5.3.3 and 5.3.4. Overall, all
software packages were capable of computing a proper reconstruction from the extracted
keyframes. This is expected since the GRIC detector ensures proper baselines between
consecutive images while retaining sufficient overlap. This is reflected in the average
reprojection errors of the tiepoints between the images, which is subpixel for both videos.
However, not all software was capable of matching all images. For instance, MetaShape
struggled with the vast number of pixels containing snow in Ghent, which are challenging to
match. The processing time also differs between the different projects. RealityCapture
outperforms the other software on both occasions in the sparse and dense matching.
MetaShape, 3D Zephyr, COLMAP and Meshroom all take second place depending on the
procedure. MetaShape has adequate sparse and dense matching but is not capable of
matching a portion of the imagery. COLMAP scores average on the matching but gets
outperformed in the dense reconstruction. Meshroom shows promising results in the dense
matching but uses significantly less tiepoints for the sparse reconstruction, possibly
introducing errors in the matching. 3D Zephyr also uses less tiepoints but has significantly
higher processing times for the sparse reconstruction.

Table 5 shows the results for the imagery batches crawled by CERTH of the
Gendarmenmarkt and the Brandenburger Gate. Similar to Table 4, a superficial comparison
can be made between the software in terms of processing speed with respect to the
outputs. In contrast to the video processing, it is expected that severe problems will occur
with the sparse and dense reconstruction. These test cases are very relevant since it can be
observed how robust the different algorithms are to noise, artefacts, lighting variation,
minimal overlap, defocus and other effects. Furthermore, the majority of the V4Design
imagery will contain similar challenges. Table 5 shows that severe issues indeed surface for
both test cases. MetaShape and Meshroom completely misalign the Gendarmenmarkt and
only succeed in matching a small portion of the Brandenburger Gate. 3D Zephyr and
RealityCapture do match about a third of the images but show increased reprojection errors.
COLMAP is the undisputed victor in the sparse reconstruction, matching over double the
number of images than other software while retaining proper reprojection errors. The
algorithm’s ability to match these types of inputs in combination with its Open Source
functions are interesting features to incorporate into the V4Design pipeline. However,
COLMAP’s dense reconstruction is relatively slow in comparison to other software. Referring
back to Table 5, it is observed that, despite the increased number of points being
reconstructed, COLMAP’s dense reconstruction is outperformed by all other software. Since

D4.3 – V1.5

Page 55

the V4Design project aims to advance the State-of-the-Art through the use of Open Source
algorithms, it is a promising proposal to combine COLMAP’s matching with other Open
Source algorithms such as Meshroom. Table 5 shows that, given a set of aligned imagery,
Meshroom’s dense matching and subsequent meshing shows promising results.
RealityCapture does still outperform in both steps due to its innovative approach to combine
the dense reconstruction and meshing in a single step, thus passing over the dense point
cloud . However, we argue that within the scope of the V4Design project, we want to retain
access to the dense points cloud as UR_021 (D7.1,7.2) indicates architects want to edit and
clean the dense point cloud. Together with the Open Source nature of Meshroom, it is
proposed to adopt and extend algorithms from Meshroom for the dense reconstruction and
meshing.

D4.3 – V1.5

Page 56

5.3.3 Comparison of the sparse reconstruction

While the previous tests give a general overview of the efficiency of the different software packages, a more detailed study of the
reconstruction performance is needed to constitute a proper reconstruction pipeline. In this section, the results of sparse reconstruction step
are briefly discussed in terms of quality, noise and density.

Table 6: Overview sparse reconstruction

 MetaShape 3DF Zephyr RealityCapture COLMAP Meshroom

Sc
h

ill
er

 M
o

n
u

m
en

t

Good quality

Medium quality

Good quality

Good quality

Medium quality

Te
ch

n
o

lo
gy

 C
am

p
u

s

Medium quality

Medium quality

Good quality

Good quality

Good quality

D4.3 – V1.5

Page 57

Table 7: Overview sparse reconstruction

 MetaShape 3DF Zephyr RealityCapture COLMAP Meshroom

G
en

d
ar

m
en

m
ar

kt

Poor quality

Poor quality

Poor quality

Good quality

failed

B
ra

n
d

e
n

b
u

rg
e

r
G

at
e

Poor quality

Medium quality

Medium quality

Good quality

Poor quality

D4.3 – V1.5

Page 58

This paragraph contains the detailed study of the sparse reconstruction of the four test cases
by the different software packages. A visual inspection is conducted of the camera
alignment, the outliers of the tiepoint reconstruction and the overall quality and density of
the models. Table 6 and Table 7 depict the reconstruction of the tiepoints in 3D. Similar to
the results presented in the paragraph above, the videos show good results for all packages.
For instance, the camera path can be clearly observed with the user circumventing the
statue in the middle of the Gendarmenmarkt. COLMAP even registers images taken by the
user stepping closer to the statue along the trajectory. However, there are differences in the
quality of the reconstructed tie points. For instance, RealityCapture reconstructs tie points
on the main body of the statue but not on the pedestal while this is the case with other
algorithms. In contrast, there are limited outliers, which is not the case for other software.
MetaShape and COLMAP still provide good quality results but Meshroom and 3D Zephyr
clearly generate more noise. These outliers will have significant impact on the dense
reconstruction and subsequent meshing since they are the basis for the depth map
generation. Similar results are observed for the University campus in Ghent. RealityCapture
and COLMAP provide low levels of noise while the other software packages do contain some
outliers. MetaShape again struggles with the large amounts of snow in the imagery and
produces more outliers, which is also reflected in the increased reprojection error (see Table
6, Table 7).

A significant difference is observed between the sparse reconstruction of the
Gendarmenmarkt and the Brandenburger Gate. Not only do most packages fail to match the
majority of the imagery, there are also alarming levels of noise present in the datasets. For
instance, both 3D zephyr and Meshroom match less than a third of the imagery and produce
so much noise that the structure is unrecognizable. RealityCapture provides better results
but the asset is still covered in high levels of outliers that will obstruct the dense matching.
The performance of COLMAP is again confirmed as it does not only match more images, but
also produces acceptable levels of noise in challenging conditions.

D4.3 – V1.5

Page 59

5.3.4 Comparison of the dense reconstruction and meshing

Similarly to the previous section, a brief overview of the results of the dense reconstruction and subsequent meshing is presented with regard
to the quality, noise and density. The main focus is on the dense reconstruction since meshing is predominantly driven by the input point
clouds.

Table 8: Overview dense reconstruction

 MetaShape 3DF Zephyr RealityCapture COLMAP Meshroom

Sc
h

ill
er

 M
o

n
u

m
en

t

Good quality

Medium quality

Good quality

Poor quality

Good quality

Te
ch

n
o

lo
gy

 C
am

p
u

s

Good quality

Good quality

Good quality

Medium quality

Good quality

D4.3 – V1.5

Page 60

Table 9: Overview dense reconstruction

 MetaShape 3DF Zephyr RealityCapture COLMAP Meshroom

G
en

d
ar

m
en

m
ar

kt

Failed

Poor quality

Poor quality

Good quality

failed

B
ra

n
d

en
b

u
rg

er
p

o
o

rt

Failed

Poor quality

Medium quality

Good quality

Failed

D4.3 – V1.5

Page 61

This paragraph contains the detailed study of the dense reconstruction of the four test cases
by the different software packages. A visual inspection is conducted of the point cloud/mesh
quality with respect to the sparse reconstruction. Table 8 and Table 9 depict the dense
matching and/or subsequent meshing in 3D. As discussed in the superficial evaluation in
paragraph 5.3.2, the results from the dense matching differ from the sparse reconstruction
presented above. For instance, it is expected that RealityCapture outperforms the other
software due to its innovative method that combines dense matching and meshing. Table 8
shows that RealityCapture is indeed not only fast, but also provides excellent results in terms
of the dense reconstruction. Especially for first two test cases, it is observed that, given
proper sparse point clouds, the reconstruction is very clean. Similar results are observed for
Meshroom and Metashape (for the statue) that produce clean 3D reconstruction even
though they are less performant. 3D Zephyr and COLMAP produce significantly more noise
despite their proper sparse reconstruction.

For the last two test cases, the quality of the models is inadequate. As expected, the sparse
point cloud drastically influences the dense reconstruction. The depth maps are prone to
noise and so is the meshing. It is clear that no software can deal with overwhelming noise in
the sparse point clouds. RealityCapture is even more affected by this since it does not
produce a dense cloud which can be manually processed by the user. The result is that all
models are heavily distorted except for COLMAP that had a better sparse reconstruction.
However, Table 9 shows that COLMAP is significantly slower than the other packages given
proper inputs. Furthermore, the dense matching of COLMAP is often prone to failure. It is
therefore clear that the State-of-the-Art can be extended by merging COLMAP’s sparse
reconstruction with Meshroom’s dense reconstruction and build our own functionalities on
top of the Open Source code to constitute both a robust and performant reconstruction
pipeline.

D4.3 – V1.5

Page 62

5.4 Architecture design 3D reconstruction Pipeline

A detailed description of the architectural design of the reconstruction is provided in D6.4
paragraph 3.1. Figure 36 shows the different executed steps throughout the pipeline
according to this design.

Figure 36: Overview of steps performed in the current iteration of the reconstruction

service.

Each of these steps are described below:

1. Content preparation

The service is informed of new data to process. Video data is downloaded from the central
knowledge base and the processing environment is prepared on the network storage
system. New data is managed in an sql-based database.

2. Frame extraction

A command is issued to the frame extraction service. The storage service provides the
appropriate video data and handles the storage of the individual frames. Once all keyframes

D4.3 – V1.5

Page 63

are extracted a message is sent to “FRAMES_AVAILABLE” topic on the V4D message bus. This
will cause the STBOL and texture proposal service to process the frames.

3. Sparse, dense and textured mesh

The reconstruction service requests the appropriate keyframes from the local network
storage for a specific video. Sparse, Dense and texturing algorithms are executed and all
results are once again managed by the storage system.

A processing environment is prepared based on the extracted keyframes. Here Sparse,
Dense and texturing algorithms are executed resulting in image alignment, pointcloud and
mesh output respectively. All output data is managed by the local storage service.

4. Metadata management and result publishing

Once all necessary metadata has been received from other modules (Aesthetics, STBOL, TP)
the resulting 3D reconstruction, including metadata, is published to the knowledge base and
thus made available for subsequent processing or the user tool environments. Optionally
additional texturing routines may be run based on TP results in order to restyle the mesh
(Example shown in Figure 41).

5.5 Implementation of SfM algorithms

In the previous chapter the system was explained from an architectural standpoint (use of
microservices and communication methods). This chapter clarifies the internal SfM
algorithms across all these micro services. Figure 37 provides a clear view of all the
necessary steps from images towards a textured mesh. For this we use a combination of
Colmap- and AliceVision-based code. Optional steps are displayed in red.

Figure 37: Steps performed in the current pipeline (After initial keyframe extraction).
Optional (red) algorithms with data from other partners.

D4.3 – V1.5

Page 64

5.5.1 Keyframe extraction

Paragraph 4 already discussed the developed algorithm in detail. The service has been
implemented in C++ with help of the following libraries:

 FFmpeg1 Video decoding

OpenCV2 Linear algebra computation, Kanade-Lucas-Tomasi (KLT) feature
tracking

5.5.2 Sparse Reconstruction

The calculation of camera alignment and sparse point cloud is based on our custom COLMAP
implementation. This functionality is integrated inside the “Reconstruction Service” node as
seen in Figure 36. C# was used for managing and initiating of the several subtasks as well as
IO. C++ was used for high performance structure-from-motion code, this code is built as a
set of command-line interface (CLI) programs. Following libraries were used (Excluding any
non-SfM related libraries):

Eigen33 Linear algebra operation

COLMAP Incremental based sparse reconstruction

5.5.3 Dense reconstruction

The implementation of the dense reconstruction algorithms are performed very similarly to
those of the sparse reconstruction. C# was also used in combination with C++ compiled CLI
applications. These CLI applications are built using the Open Source AliceVision project,
which has received funding from the European Union’s Horizon 2020 research and
innovation progamme in the past4. Here, the Depth-map generation, surface reconstruction
and texturing code has been reused. Additional filtering functionalities based on masks
(STBOL) may be used as seen in Figure 37. Whereas the texturing would normally be
executed on the original undistorted frames, this pipeline also accepts input from the
texture proposal service developed in T4.2.

5.5.4 Service output

Once the pipeline has successfully finished, a result is pushed to both the V4D message bus
and the knowledge base. The result is Json-formatted which contains the following data (for
the 1st prototype): Unique ID, visual analysis results, mesh information, point cloud
information, data storage URLS, used raw data (ID’s from video & images) and a thumbnail.

1 https://ffmpeg.org/
2 https://opencv.org/
3 http://eigen.tuxfamily.org

4 POPART (project ID 644874) and LADIO (project ID 731970)

https://ffmpeg.org/
https://opencv.org/
http://eigen.tuxfamily.org/

D4.3 – V1.5

Page 65

Figure 38: Example Json generated after the pipeline finishes. Pointcloud data is currently
not used by the tools and thus not published to the storage service.

D4.3 – V1.5

Page 66

5.5.5 Pipeline experiments

A total of 47 videos with a SIMMO ID are currently available in the V4D knowledge base.
These videos are well annotated. The 3DR pipeline was initiated using a DATA_AVAILABLE
message. Currently 24 sparse point clouds have been automatically extracted from these
videos and a total of 14 textured models are automatically created. An initial, currently semi-
automatic, pipeline test for texture proposal was executed successfully and can be seen in
Figure 41.

A large set of AF video data yielded good results in spite of the poor video quality (640x480
pixel, grainy due to low light conditions) and can be seen in Figure 39. However in a minority
of the cases the meshing process, though executing successfully, was unable to fully
reconstruct the objects (seen in Figure 39, 3rd and last mesh).

For some videos, containing on-screen text or edited in another fashion, the automatic
pipeline did not succeed. Figure 31 shows an example of a video found in the V4D
knowledge base with on-screen text. This in particular causes bad image alignment due to a
high amount of matched features in the textual areas. Tests showed that by removing these
keyframes good reconstructions can be achieved.

For the first prototype only consortium partner data with sufficient textual annotations has
been imported into the knowledge base. Additional models were also retrieved from data
not yet present in the V4D knowledge base. This includes models extracted from: crawling
unit data, YouTube and non-annotated consortium partner data (Figure 40).

Figure 39: Some results from AF data present in KB. Bottom right: failed bench meshing

Figure 40: Reconstruction from AF data not yet present in the KB.

D4.3 – V1.5

Page 67

Figure 41: Reconstruction of DW’s data. 6 additional texture styles were computed based on
texture proposal results.

Figure 42: Left: Example ‘bad’ keyframe containing onscreen text and logos. Right: resulting
3D, obtained by removing the bad keyframes.

D4.3 – V1.5

Page 68

5.5.6 Conclusions

The modular architecture design allows for easy further development and addition of new
algorithms in the upcoming 2nd prototype, such as improved mesh filtering, model
segmentation and IFC object extraction.

In this 1st prototype emphasis was put on the system architectural design. The modularity
and backwards-compatible gRPC protocol eases further implementation of new algorithms
currently being developed for the 2nd prototype (mask filtering, segmentation, IFC extraction
or single view reconstruction). After a thorough study of current state-of-the-art commercial
and non-commercial photogrammetry software, our SfM pipeline has combined the
strengths of 2 major open source packages: Colmap and AliceVision. Research and
development done in V4Design’s photogrammetry service builds on top of this software and
thus contributes to these packages. A complete and automatic SfM pipeline has been
implemented and tested on a variety of data. Tests for restyling a mesh based on texture
proposal results were successful and this feature can be automized and added to the current
automatic pipeline.

D4.3 – V1.5

Page 69

6 ENHANCED 3D MODEL EXTRACTION

As stated in D3.2, Seven user requirements from D7.2 have been associated with the texture
proposals module of V4Design, namely the UR_002, UR_003, UR_004, UR_011A, UR_013,
UR_017 and UR_018. These include both high quality textures from reused imagery in the
V4Design project and fictional textures that can be used for conceptual design. In this
chapter, the implementation of texturing and masking results in the SfM pipeline are
discussed along with experimental results.

6.1 Input from STBOL and AE&TP algorithms

The inner workings of the Spatio-Temporal Building and Object Localization and the
Aesthetics Extraction algorithm are discussed in D3.2. The former classifies pixel information
into object classes. From these classes, image masks are generated that are used to support
the SfM pipeline. The latter is an architectural synthetic tool to support model texturing. The
outputs of both algorithms are embedded in the reconstruction pipeline to enhance the
results. In the following paragraphs, each of the inputs is discussed in detail.

6.1.1 STBOL

The Spatio-Temporal Building and Object Localization algorithm detects various types of
objects in the input imagery. It consists of a pre-trained classification model based on the
VGG16 model that interprets each pixel of a set of input imagery and defines its class based
on a set of local and contextual features (see D4.2). As an output, binary masks are
computed for each image that are used to segment the reconstruction results (Figure 43). In
this chapter, the emphasis is on the integration of the building masks since the SfM pipeline
predominantly focuses on the built assets.

The output masks can serve various purposes. First, they can be used to speed up the
reconstruction since only 3D data has to be computed on structures instead of the entire
environment. Secondly, they can be used to enhance the sparse and dense reconstruction by
filtering outliers in the point clouds. For instance, the removal of faraway points on moving
clouds, humans and cars can aid in the production of proper point cloud data. This in turn
results in significantly better meshes since less noise is present in the data set. Finally, the
prior segmentation in the imagery facilitates the semantic enrichment since a prior
classification is performed limiting the number of available classes to those present in
building environments.

D4.3 – V1.5

Page 70

Figure 43: Masking results of the VGG16 CNN algorithm: (a) initial image, (b) building mask
and (c) sky mask.

6.1.2 AE&TP

The aesthetics algorithm also builds upon the pre-trained VGG16 architecture and is fine-
tuned by learning the aesthetics parameters from the benchmark Places2 dataset as
discussed in D3.2. Both the style, genre and artist characteristics are extracted per painting.
These are merged with input imagery of the crawling to generate novel textures from
existing data. For instance, Figure 44 depicts the texture style of Van Gogh extracted by the
AE&TP algorithm superimposed on a crawled image of the Gendarmenmarkt.

D4.3 – V1.5

Page 71

Figure 44: Style transfer of the famous painting Cafe Terrace at Night of Vincent Van Gogh to
an image of the Gendarmenmarkt.

As stated in D3.2, the AE&TP results can be combined with the masks of STBOL to transfer
the texture proposals to a specific part of an image or video. An innovative application of
the proposed algorithm is background to background and foreground to foreground transfer
between art and real life inputs. For instance, Figure 45 shows the superimposition of the
yellow and blue building texture style of Van Ghogh projected on the wall of the
Konzerthaus at the Gendarmenmarkt. This targeted style transfer allows for a wide variety of
styles to be combined for the different objects in the scene, offering numerous possibilities
for conceptual design and game development.

Figure 45:Targeted texture superimposition of the Van Gogh style (b) on the mask of the
Konzerthaus (a) at the Gendarmenmarkt, resulting in an impressionistic digital

representation of the asset (c).

A third potential application of the AE&TP algorithm is the enhancement of the texture
quality of the results of the Structure-from-Motion pipeline. Typically, photogrammetric
texturing is performed with an equal input of all oriented imagery. While this the ideal
setting for videos or image sequences that were captured at the same time, this proves
subideal for the crawling outputs. After all, the emphasis of the crawling unit is to retrieve all
the different imagery taken from the same asset. This includes pictures taken in various
lighting conditions such as during festivals, different time periods and so on (Figure 46). As
multiple states are useful to conceptual design, it is interesting to separately texture the final
model using only the imagery of a specific style or period. As a result, users can have their
assets textured according to their needs without the need to alter lighting conditions or

D4.3 – V1.5

Page 72

manually adjust textures, which requires expert knowledge concerning texture mapping in
shaded conditions.

Figure 46: Difference between images taken during different time periods, which results in
subideal texturing of the SfM reconstruction.

6.2 Segmentation of 3D models

As previously discussed the resulting masks of the STBOL algorithm can be beneficial to the
proper reconstruction of building geometry from crawled imagery. In this section, the first
implementation of masked imagery is discussed along with the literature study,
experimental results and future work.

6.2.1 Masking in SfM

SfM pipelines rely on significant image redundancy in order to create photorealistic models
of objects of interest. The State-of-the-Art and the presented experimental results show that
scenes can be reliably reconstructed under the assumption of shape constancy and
appearance congruency, commonly associated with static structures. However, as shown in
Figure 47 the crawled imagery and videos are littered with what is referred to as dynamic
objects due to visual motion. 3 types of visual motion are defined in the literature (Nelson
and Polana, 1992).

D4.3 – V1.5

Page 73

Figure 47: Crawled imagery and videos are littered with dynamic objects.

 Activities: These are moving objects such as cars or humans, which have motion
patterns that are periodic in time. These mainly cause artefacts in sequential imagery
and frames extracted from videos, distorting both the 3D reconstruction and the
subsequent texturing. In the crawled imagery, activities are considered motion
events since the occurrences typically are observed only in a single image and are not
predictable.

 Motion Events: non-periodic events like the opening of a door, which lack spatial
periodicity. The impact of these events is similar to that of the activities. Video
frames will have their 3D reconstruction and texturing distorted. The crawled
imagery will show only artefacts in the texture as it is unlikely that the event occurs
in multiple crawled images.

 Dynamic textures: these occurrences exhibit statistical regularity but have uncertain
spatial and temporal extent such as rain, shadow, and smoke. These do not affect the
reconstruction but have drastic effects on the texture quality of the model.

It is vital that these occurrences are detected and taken into consideration for the 3D
reconstruction and the subsequent texturing. Both aspects are treated separately in the
literature. The enhancement of 3D reconstruction by masking is considered an instance of
motion detection (Jodoin et al., 2014). The simplest of options is masking non-buildings of
the images before starting the SfM pipeline. However, by removing a portion of the scene,
the number and distribution of tiepoints is reduced, possible resulting is a less accurate
reconstruction. As discussed in paragraph 4, a reduction in tie-points leads to an increase in

D4.3 – V1.5

Page 74

errors. Alternatively, the exterior camera parameter estimation is performed on the full
images while the dense point cloud is constructed using the masked images. This is a
promising approach which is also proposed in the V4Design pipeline. A potential drawback is
the lack of 3D interpretation of motion events, which in this method solely relies on the 2D
masks. An alternative approach is to use the masks during the iterations of an incremental
reconstruction procedure. One method is to filter the outputs based on a shape-from-
silhouette procedure presented by Schmid et al. (Schmid2014). They perform a coarse
identification of the dynamic scene elements and use this information to perform a
foreground-background segmentation similar to the masks computed by STBOL. An essential
part of their work is the iterative process of projecting dynamic occurrences back onto the
input imagery to confirm their results. Post-reconstruction filters are also considered such as
raytracing the masks to segment the dense reconstruction of the full images (Rashad et al.,
2017). However, it is computationally more efficient to incorporate the masks earlier in the
workflow.

6.2.2 Methodology

In this section, the exploitation of mask extracted by STBOL is presented. As discussed in
Section 4 and D4.2, keyframes are forwarded to STBOL. In parallel, the sparse reconstruction
is computed for all inputs. Once the images are aligned, the imagery is replaced with
segmented/masked imagery to generate the depth maps. Currently, only building masks are
retained as defined by the user requirements. The different step of the masking are
discussed in detail in the paragraphs below (Figure 48).

Figure 48: Dense reconstruction procedure, based on presegmented imagery.

Figure 49 Left: received Json data from STBOL. Right: resulting mask

D4.3 – V1.5

Page 75

The automation of the STBOL masks and its integration in the 3D reconstruction pipeline is
currently being implemented.

6.2.3 Experiments

The Gendarmenmarkt is used several times as a demonstrator throughout the project. For
the prototype of the enhanced model extraction, a video sequence is tested, created by a
photographer walking over the square filming the Konzerthaus and the French Cathedral,
cluttered with tourists and other artefacts (Figure 50). It is an ideal dataset for 3D
reconstruction due to the camera movement and motion detection is paramount since the
artefacts are located directly in front of the buildings and thus would cause problems in the
reconstruction and subsequent texturing of the site. During the preprocessing, 1057
keyframes are extracted from the video using the GRIC algorithm presented in paragraph 4.
The resulting images are segmented by the STBOL algorithm (Figure 51) into different
classes. Following, the output classes are used to mask all non-building classes in the
imagery (Figure 52). Given the exterior camera orientation of the sparse reconstruction and
the masks, a set of depth maps are produced depicting the building geometry (Figure 52).
Finally, a reduced dense point is computed. The result is a reduced dataset which better
corresponds to the asset the user wants to reconstruct if requested (Figure 53)

Figure 50: Overview Image Sequence Gendarmenmarkt from extracted keyframes

D4.3 – V1.5

Page 76

Figure 51: Overview Spatio-Temporal Building and Object Localization (STBOL) results
identifying persons, sky and other non-building object types.

Figure 52: Overview image masks removing all non-building entities from the imagery.

D4.3 – V1.5

Page 77

Figure 53: Depth Map Generation from masked imagery.

Figure 54: Overview resulting data reduction of the final reconstruction compared to the
initial SfM pipeline.

For the sake of the experiment, the building point clouds are compared to the initial
reconstruction. Table 10 shows the difference in computation time between both models. It
can be clearly observed that a significant time reduction can be achieved through
segmentation. Furthermore, some imagery does not contain any building geometry and thus

D4.3 – V1.5

Page 78

can be ignored during the dense reconstruction. Overall, no less than 29% of the scene could
be removed based on the STBOL detection. Not only does this improve the data efficiency, it
also supports further segmentation into separate buildings since a significant portion of the
noise and clutter is removed from the point clouds.

Table 10: Overview comparison between initial reconstruction and segmented building point
clouds

Dataset Images STBOL
Buildings

Initial
point
cloud

Time
[s]

Targeted
Building
Reconstruction
point cloud

Time
[s]

%Scene
reconstruction

Gendarmenmarkt 1057 957 667
345

0:15:35 405 326 0:05:12 29%

6.2.4 Future work enhanced model extraction

The current segmentation targets building geometry driven by an image based
interpretation framework. It is important to notice that the buildings class is an archetype
and thus there is no differentiation between a specific building and the structure next to it.
As a result, a user initiating a reconstruction based on imagery of the Gendarmenmarkt or
even the Konzerthaus will be delivered a model that contains the target structure and all the
building geometry surrounding it that happens to occur in the crawled imagery. A valuable
extension is to further extend the segmentation based on the keywords entered by the user.
For instance, the keyword Konzerthaus should only provide 3D results for the structure itself
opposed to the entire site. To enable this segmentation, Geospatial databases may be
employed. Given

D4.3 – V1.5

Page 79

Figure 55: Overview future work enhanced model extraction through the use of Geospatial
databases.

the geolocated position of the target asset, a spatial segmentation can be performed in
addition to the building detection by STBOL. This is under the assumption that the crawled
footage can be spatially linked to existing geolocated resources (Figure 55). If this is the case,

D4.3 – V1.5

Page 80

the building footprint or the bounding box can be used to isolate only those building points
that are part of the intended structure. Alternatively, Semantic Web technologies can be
used to the same effect. Given geolocation triples on dbpedia or other resources, similar
spatial search queries can be initiated to segment the data. However, licensing permissions
are mandatory in order to use online geospatial repositories. WP9 focusses on licensing and
IP that will enable this extension.

6.3 Texture enhancement

The proper retrieval of color information for the final mesh is considered an instance of
texture optimization. Initially, texture was retrieved using vertex rendering methods.
However, current methods nearly all rely on reprojecting images. Typically, all imagery is
considered for the texturing but as stated above, this is subideal for crawled imagery. As a
solution, weighted texturing is proposed (Baumberg, 2002). This is not applicable to the
V4Design data unless the weights of some textures are considered 0, and also this method is
prone to texture inconsistencies (Zhang, 2017). As a solution, priority imagery is proposed to
incrementally texture portions of the mesh taking into consideration the visibility conditions
between the images and the 3D surface model. As a criterion, the highest image quality in
terms of Ground Sampling Distance is proposed.

𝐺𝑆𝐷 =
𝐷 ∗ 𝐶𝐶𝐷𝑖,𝑗

𝑓 ∗ 𝑟𝑒𝑠𝑖,𝑗

Where D is the distance to the objects of interest, 𝐶𝐶𝐷𝑖,𝑗the sensor width [mm] along the

width or height of the sensor, f the focal length [mm] and 𝑟𝑒𝑠𝑖,𝑗the number of pixels along

the width or height of the image. Iwaszcuk et al. (Iwaszczuk, 2015) extend this with
completeness of the texture, projection accuracy, viewing angle, and geometric resolution.
This operation requires the processing of the candidate images to produce uniform
brightness, contrast and saturation and to select the portions of the partial UV map
corresponding to the central portion of the respective image to reduce the influence of the
residual radial distortion (Caroti, 2015). One drawback of these blending approaches is their
sensitivity to ghosting and blurring artefacts when textures are misaligned (Figure 56).

D4.3 – V1.5

Page 81

Figure 56: Example of misaligned textures resulting in a blurry texturing of the mesh object
(Gal et al., 2010)

To overcome the artifacts introduced by per-triangle texturing, Lempitsky et al. (Lempitsky,
2007) consider the paradigm as a global optimization problem that can be solved with
Markov Random Fields. Each surface triangle is projected back onto the images from which it
is visible. A minimum set of image is sought that minimizes image blur across triangles. Gal
et al. (Gal, 2010) further extend this by compensating for calibration and reconstruction
errors, showing promising results.

6.3.1 Methodology

In this section, the implementation of the texturing is discussed. In the prototype SfM
pipeline, the Open-source texture functions of Meshroom are used as implemented by Levy
et al. (Levy et al., 2002). The Least Squares Conformal Maps for Automatic Texture Atlas
Generation including the segmentation, parameterization and image projection are
discussed below.

Chart Segmentation

The first step in segmentation is to divide the mesh into a set of homeomorphic parts,
referred to as charts. The combination of texture charts is referred to as the texture atlas,
which can be stored in well-known file formats such as .jpg or .png. The size of each chart is
either user driven or dependent on the average texel size of the textured model. The latter is
preferred since the texturing can then be formulated as a function of the input image
resolution and the triangle size.

𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑢𝑛𝑖𝑡

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑢𝑛𝑖𝑡

D4.3 – V1.5

Page 82

An advantage of this method is its invariance to scale, which is crucial in the V4Design
pipeline, as predominantly unscaled models will be produced. Also, it automatically takes
the distance from the camera to the model into consideration since the average texel size is
used. Given a user defined quality setting for the model, the total size of texture space is
computed. This feature space is evenly distributed into 2048, 4096 or 8192 texture files to
form the texture atlas.

Chart Parameterization

Each chart is unfolded with respect to its subset in the mesh. Meshroom employs conformal
maps where the tangent vectors to the iso-u and to the iso-v curves are orthogonal and have
the same length (Figure 57).

Figure 57: Conformal map relation to mesh surface as described by Levy et al. (Levy et al.,
2002)

The mapping of the triangles to the conformal map is performed using a least squares
optimization problem. A subsegmentation is performed that clusters triangles onto a portion
of the chart to ensure that neighbouring triangles are textured using the same image. This
significantly reduces artefacts in the final texturing and improves the computational
efficiency of the image selection.

Image reprojection

Once a set of uv maps is constructed representing the mesh surface, the imagery is
reprojected to texture each triangle. As discussed above, the best fit imagery is chosen for
each triangle. Meshroom filters the cameras without a good angle to the surface to favor
front-to-parallel cameras and finally averages the pixel values (Figure 57). A maximum of 3
images are considered for every triangle. The final texturing is computed by minimizing the
error for the angle θ to the object, the distance D to the object and the offset from the
camera center to the projected pixel.

D4.3 – V1.5

Page 83

Figure 58: Image reprojection parameters for best fit texturing.

6.3.2 Texture Experiment

Two experiments are conducted for the texturing of the 3D reconstruction. The first test is a
video sequence taken by a drone and the second is the crawling data dump which is also
discussed in section 5.3. Both tests are discussed below.

Drone footage Bauhaus universität

The drone footage originates from a drone recon flight conducted in September 2017. It is a
round flight of the Bauhaus in broad daylight. It is expected that proper texturing results are
achieved for this data set due to the ideal circumstances. 103 frames are extracted using the
GRIC algorithm after which the sparse reconstruction was performed in COLMAP and the
dense reconstruction computed in Meshroom. The texturing was performed with the
Meshroom Least Squares Conformal Maps for Automatic Texture Atlas Generation. A texture
quality of 100% was selected for the colorization of the mesh.

Figure 59 shows one frame of the flight, along with the texture quality of the 3D
reconstruction. It can be observed that the texture quality nearly equals the initial imagery.
Upon more detailed inspection, there are some blending errors and artefacts but these are
very limited. This is due to the consistent range at with the footage was acquired, the highly
accurate exterior orientation and the uniform lighting in the imagery. It is stated that no
texturing problems occur for these types of inputs.

D4.3 – V1.5

Page 84

Figure 59: Texturing results Bauhaus universität: (top) image from drone, (left) zoom in of
same image, (bottom) textured mesh and (right) call out of textured mesh

D4.3 – V1.5

Page 85

Crawled imagery Gendarmenmarkt, Berlin

The second experiment investigates the ability of Meshroom to texture imagery from
different repositories. The same image crawling batch is used as discussed in paragraph 5.3.
Figure 60 and Figure 61 depict the wide variety of textures that occur in the data set. The
colors range from near white all the way to near black.

Figure 60: Gendarmenmarkt image batch including images under varying lighting conditions:
(left) normal daytime lighting and (right) dark evening light.

Figure 62 shows the resulting textured mesh of the structure. While the geometry of the
structure is properly reconstructed, the texture is not. Some of the brick texture can still be
distinguished but it is clearly observed that the texture has become a blur of the different
image textures. Different shades coexist in the texture ranging from dark grey from the
imagery taken at night to a near white texture during the day. This is expected due to the
high texture variance of the inputs. Overall, it is stated that the texture quality is inconsistent
in color and blurry. Texture enhancements are in order to improve the results.

D4.3 – V1.5

Page 86

Figure 61: Gendarmenmarkt image batch including images under varying lighting conditions:
(left) warm evening light and (right) cold daytime.

Figure 62: Resulting texture using all aligned input imagery showing blurred colours.

D4.3 – V1.5

Page 87

6.3.3 Future Work texturing

The above presented method succeeds in compensating stitching errors between similarly
textured images. However, the main issue with crawled imagery is that some textures
cannot coexist. Depending on the acquisition conditions and the time period, subsets of the
input data are not supposed to contribute to a single texturing of the model. There are
several opportunities to deal with this problem. We propose the use of subsets of texture
styles in the V4Design project, which can be used to create different models. This would
comprise of an initial best fit texturing for the asset. Subsequently, the texture could be
replaced by the different texture styles. As it is likely for texture subsets to lack sufficient
imagery to texture the entire asset, the style can be detected and superimposed on the
initial texturing to fill the gaps. The style can also originate from fictional inputs such as
paintings. As a result, different model textures are computed for the mesh model.

The AE&TP (D3.2) algorithm can be extended to interpret the building textures and segment
them into preset styles. As input, the full images should be used since the surroundings of a
building give distinct cues about the style of the representation. For instance, the sky is a
vital clue for the identification of day or night imagery. Following textures could be
identified.

 Realistic daytime: The most used texture for building models is realistic daytime. This
implies imagery taken during the day with sufficient quality and resolution. It serves
as the basis best fit texture that can also be used for the texture weight factoring.

 Evening: A common class is imagery taken during the evening or nighttime. It is a
valuable representation since game developers and Architects are interested in the
unique lighting conditions of an asset during the night.

 Historic: Historic images differentiate from other imagery as they often do not
contain color or depict the buildings without the pathologies that are commonplace
for historic buildings. This is especially interesting for game development that often
focuses on scenery from the past.

 Special: In addition to evening and daytime pictures, the image batch also contains
special texturing such as images taken during a light festival and so on. These
textures are fairly unique and thus hard to imitate. However, they need to be
segregated since otherwise they would have a significant impact on the final texture
mosaic.

 Painting styles: In addition to the styles extracted from the input imagery, the
database is further expanded with fictional styles derived from paintings or other
inputs. Concretely in the V4Design project, painter styles are learned from their
respective works to publish creative content for the users.

The subsets are prone to leaving gaps in the texturing since the images batches aren’t
sufficiently large or do not cover the entire asset. As a solution, we propose the
superimposition of the texture styles onto the initial texture. Similar to the painting styles,
the categories of night imagery and historic imagery can be extracted from the subset of
images. The initial best fit textures could be altered in such a way that they resemble the
texture of the subset. However, they would be given a low weight so they can only be used
to texture the gaps of the model.

D4.3 – V1.5

Page 88

7 CONCLUSION & FUTURE WORK

7.1 Conclusions

In this first iteration of the automated 3D reconstruction pipeline, we thoroughly assessed
the State-of-the-Art of Structure-from-Motion methods for their ability to process video
sequences and crawled image data sets and produce textured 3D mesh models. From the
experiments, it was derived that the most promising method is to combine and extend
existing algorithms. More specifically, COLMAP was implemented for the sparse
reconstruction and Meshroom for the dense reconstruction. The algorithms from both
softwares were integrated and automatically process any image batch when called upon by
the message bus developed in WP7. Our method outperforms the individual State-of-the-Art
approaches in terms of effectiveness and efficiency. This is especially true for the crawled
imagery from varying sources with different lighting conditions, quality and from different
time periods that severely obstruct conventional SfM pipelines.

There are several key contributions in the proposed 3D reconstruction pipeline. For the
video processing, we extract keyframes through shot detection and GRIC baseline detection.
We also asses the shots to dispatch degenerate parts and evaluate the blurriness of the
resulting keyframes. In the image preprocessing, the STBOL outputs (D3.2) are used to
compute masks to enhance the model extraction. More specifically, the method is made
computationally more efficient by using the full images for the sparse reconstruction and the
masked imagery for the dense reconstruction. The resulting reconstructions only depict
objects from a single STBOL class i.e. buildings which is both faster and cleaner than the
current reconstructions. The subsequent algorithms are governed by independent
communication modules run on KUL servers that relay their respective process metadata
through the message bus and thus allow swift and flexible processing. Furthermore, the
communication modules are developed in such a way that we are able to batch process
input messages and populate the knowledge base. A final contribution in the first iteration is
the texture enhancement of the 3D models. The outputs of the AE&TP algorithm developed
in D3.2 are used in combination with the native Meshroom texture functions to compute
multiple textures for the same 3D models. The resulting high quality textures from reused
imagery and fictional textures can be used for conceptual design as specified by the user
requirements.

7.2 Future Work

There are several opportunities to upgrade the SfM pipeline in the operational prototype by
M28. First of all, we plan on expanding the input filtering, as it is vital to the success of the
method. It is worthwhile to notice that the Gendarmenmarkt and the BrandenBurger Gate,
despite the large number of irrelevant images, are well documented assets for which
numerous proper images exists. However, this is unlikely the case for many other key-word
based crawlings. One suggestion is to develop a prior SfM evaluation tool that provides
feedback to the user on the feasibility of the reconstruction given the initial results of the
crawling. This proposition is based on the fact that the user is probably unfamiliar with which
imagery is suitable for 3D reconstruction and thus is prone to engage the crawling with
inconvenient key-words. It is therefore better to warn the user about the expected results

D4.3 – V1.5

Page 89

rather than disappointing an unexperienced user after the several hours SfM process fails to
provide 3D results. Similarly, we are currently investigating the opportunities to enable
process feedback during the reconstruction. More specifically, we are working on an online
sparse and dense point cloud preview so users can evaluate their intermediate results.
Another upgrade is the extension of the COLMAP image matching procedure that currently
considers all inputs to be unordered data sets. However, some imagery contains EXIF data
with location information that can be used to enhance the image matching. Furthermore,
the location information allows the scaling of the 3D models that are currently
predominantly unscaled. Single view reconstruction is also being considered since the scope
of V4Design extends towards the processing of imagery of artwork e.g. pottery which is
often documented with a single image.

For the enhanced model extraction, the following opportunities are under investigation. The
segmentation can be significantly enhanced by integrating location information in the
process either through Linked Data Resources or the Geolocation of the imagery. Also,
several texture implementations are proposed to enhance texturing results and allow users
to choose the best suited texture for their applications.

D4.3 – V1.5

Page 90

REFERENCES

J.L Schönberger, and J-MFrahm, „Structure-from-Motion revisited“, In proc. Conference on
Computer Vision and Pattern Recognition, pp. 4104-4113, 2016

D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal
of Computer Vision, 60 (2004), pp. 91–110.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF)”,
Computer Vision and Image Understanding, 110 (2008), pp. 346–359.

N. Ramakrishnan, T. Srikanthan, S.K. Lam, and G.R. Tulsulkar, “Adaptive window strategy for
high-speed and robust KLT feature tracker” in Lecture Notes in Computer Science, 2016,
vol 9431, pp. 355-367.

J. L. Schönberger, T. Price, T. Sattler, J.-M. Frahm, and M. Pollefeys, “A vote-and-verify
strategy for fast spatial verification in image retrieval”, In Asian Conference on
Computer Vision (ACCV), 2016.

D. Nistér. "An efficient solution to the five-point relative pose problem". IEEE Transactions
on Pattern Analysis and Machine Intelligence. 26 (6): 756–777, 2004.

B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle Adjustment – A Modern
Synthesis”, Springer, 2010.

N. Jiang, Z. Cui, and P. Tan, “A global linear method for camera pose registration” In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 481–
488, 2013.

H. Cui, X. Gao, S. Shen and Z. Hu, “HSfM : Hybrid Structure-from-Motion”, In Proceedings of
CVPR, pp. 1212–1221, 2017.

F. Remondino, E. Nocerino, I. Toschi, and F. Menn, “A critical review of automated
photogrammetric processing of large datasets”, International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,
42(2W5):591–599, 2017.

D. Shin, and J. Muller, “An explicit growth model of the stereo region growing algorithm for
parallel processing”, in ISPRS Technical Commission V Symposium, XXXVIII, 2010.

V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts”, Proc. ECCV
2002, pp. 8–40, 2002.

D. Tingdahl, and L. Van Gool, “A public system for image based 3D model generation”, In
Lecture Notes in Computer Science, 6930, pp. 262-273, 2011.

M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction”, in Symposium on
Geometry Processing, 2006, pp. 61–70.

V. Lempitsky and D. Ivanov, “Seamless mosaicing of image-based texture maps”, in Proc. of
CVPR, 2007.

FFMPeg-developers, “FFmpeg 4.0.2”, www.ffmpeg.org, 2019.

N. V. Patel, and I. K. Sethi, “Video shot detection and characterization for video database”,
in Pattern Recognition, 30(4), pp.583-592, 1997.

D4.3 – V1.5

Page 91

S. Tsekeridou, and I. Pitas, “Content-based video parsing and indexing based on audio-visual
interaction”, in IEEE Transactions on Circuits and Systems for Video Technology, 11(4),
pp. 522-535, 2001.

Z. Cernekova, and I. Pitas, “Information Theory-Based Shot Cut/Fade Detection and Video
Summarization”, in IEEE Transactions on Circuits and Systems for Video Technology,
16(1), pp. 82-91, 2006.

E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine learning approach to
corner detection” in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol.
32, pp. 105-119.

J. Shi and C. Tomasi, “Good Features to Track”, IEEE Conference on Computer Vision and
Pattern Recognition, pages 593–600, 1994.

P. Torr, “An assessment of information criteria for motion model selection”, Proc. CPVR,
pp47-53, 1997.

R. Hartley, and A. Zisserman, “Multiple View Geometry in Computer Vision”, Cambridge
University Press, ISBN 0521540518, 2004.

R. Arriew, “Ockham’s razor: a historical and philosophical analysis of Ockham’s principle of
parsimony”, PhD thesis, University of Illinois, 1976.

H. Akaike, “A new look at the statistical model identification”, IEEE Transactions on
Automatic Control, 19(6), pp 716-723, 1974.

J. Rissanen, “Modeling by the shortest data description”, in Automatica, vol 14, pp. 465-471,
1978.

J. Aldrich, “R. A. Fischer and the making of maximum likelihood 1912-1922”, in Statistical
Science, 12(3), pp. 162-176, 1997.

Rashad, M., Khamiss, M., & Mousa, M. (2017). A review on image segmentation techniques.
International Journal of Engineering and Innovative Technology.
https://doi.org/10.1016/0031-3203(93)90135-J

Baumberg, A. (2013). Blending Images for Texturing 3D Models. In Proceedings of the British
Machine Vision Conference, 38.1-38.10. https://doi.org/10.5244/c.16.38

AliceVision. (2019). Meshroom. AliceVision. https://alicevision.github.io/#meshroom

RealityCapturing. (2017). Capturing Reality. https://www.capturingreality.com

Pix4D (2016) Pix4D: Professional photogrammetry and drone mapping software.
https://www.pix4d.com/

Agisoft. (2018). Metashape. Retrieved from https://www.agisoft.com/

https://doi.org/10.1016/0031-3203(93)90135-J
https://doi.org/10.5244/c.16.38
https://alicevision.github.io/#meshroom
https://www.capturingreality.com/
https://www.pix4d.com/
https://www.agisoft.com/

D4.3 – V1.5

Page 92

Schonberger, J. L., Zheng, E., Pollefeys, M., & Frahm, J.-M. (2016). Pixelwise View Selection
for Unstructured Multi-View Stereo. European Conference on Computer Vision (ECCV).
https://demuc.de/COLMAP/

3Dflow. (2014). 3DF Zephyr. https://www.3dflow.net

Levy, B., Petitjean, S., Ray, N., & Maillot, J. (2002). Least Squares Conformal Maps for
Automatic Texture Atlas Generation Bruno. ACM SIGGRAPH 2005 Courses, SIGGRAPH
2005. https://doi.org/10.1145/1198555.1198581

Caroti, G., Martínez-Espejo Zaragoza, I., and Piemonte, A. 2015. Range and image based
modelling: a way for frescoed vault texturing optimization, Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., XL-5/W4, 285-290, doi:10.5194/isprsarchives-XL-5-W4-
285-2015, 2015.

Iwaszczuk, D., Hoegner, L., & Stilla, U. (2015). Quality-based building-texture selection from
different sensors. 2015 Joint Urban Remote Sensing Event, JURSE 2015, 1–4.
https://doi.org/10.1109/JURSE.2015.7120352

Zhang, W., Li, M., Guo, B., Li, D., & Guo, G. (2017). Rapid texture optimization of three-
dimensional urban model based on oblique images. Sensors (Switzerland), 17(4).
https://doi.org/10.3390/s17040911

Schmid, C., Verbeek, J., Revaud, J., & Oneata, D. (2014). Computer Vision – ECCV 2014. ECCV
2014 - European Conference on Computer Vision (Vol. 8691).
https://doi.org/10.1007/978-3-319-10578-9

Jodoin, P. M., Piérard, S., Wang, Y., & van Droogenbroeck, M. (2014). Background Modeling
and Foreground Detection for Video Surveillance: Overview and benchmarking of motion
detection methods. CRC Press. https://doi.org/10.1201/b17223

Rashad, M., Khamiss, M., & Mousa, M. (2017). A review on image segmentation techniques.
International Journal of Engineering and Innovative Technology.
https://doi.org/10.1016/0031-3203(93)90135-J

Nelson, R., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP:
Image Understanding 56, 78 (1992)

Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, 56(3):221–255, 2004.

https://demuc.de/colmap/
https://www.3dflow.net/
https://doi.org/10.1145/1198555.1198581
https://doi.org/10.1109/JURSE.2015.7120352
https://doi.org/10.3390/s17040911
https://doi.org/10.1007/978-3-319-10578-9
https://doi.org/10.1201/b17223
https://doi.org/10.1016/0031-3203(93)90135-J

