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Executive Summary 

This deliverable reports on the development and implementation of the 3D reconstruction 
pipeline. Next to the relevant scientific description, the integration of the message passing 
schema of the 3D reconstruction and functions from Open Source libraries are discussed in 
this document as well. The goal of the 3D reconstruction is the production of 3D mesh 
models from image sequences originating from video and crawled imagery. This is further 
extended by integrating building intelligence to extract meshes of existing patrimony. 

This document describes in detail the WP4 modules and includes the presented methods, 
functions and resources that were adopted in order to fulfil the requirements specified in 
the DoA and user requirements (D7.1, D7.2). The deliverable thoroughly describes the 
literature, methodology and experiments of the 3D reconstruction that were implemented 
in the first prototype (M18). The inputs from STBOL, AE&TP and the crawling are discussed 
with respect to the message passing schema. For each module, an overview of the State-of-
the-Art (SoA) and a comparison to other approaches is presented. This includes the 
literature concerning Structure-from-Motion (SfM), existing software functionalities, video 
processing and enhanced model extraction. The implemented functions are tested on 
realistic project data and the performance is explained at the end of each section.  

The following modules are presented. We highlight the most important parts for each: 

a) The extraction of keyframes from input video sequences, which includes keyframe 
estimation and detecting of degenerate inputs and blurry frames. 

b) The photogrammetric SfM process including image preprocessing, sparse 
reconstruction, dense reconstruction, meshing and model texturing. 

c) The enhanced model extraction which interprets STBOL and AE&TP outputs as 
described in D3.2 to segment building geometry.  

KUL was responsible for the development of the described methodologies and modules for 
3D reconstruction and enhanced model extraction. The process is fully automated including 
parameter estimation, message passing and model extraction. The input raster data is 
processed on KUL servers and the outputs are stored in the knowledge base developed by 
CERTH conform the schema set up in WP2. The future work includes increasing system 
robustness, integration of Linked Data from WP5 and additional reconstruction functions. 
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Abbreviations and Acronyms 

AE&TP 

SfM 

STBOL 

Aesthetics extraction and texture proposals   

Structure-from-motion 

Spatio-temporal building and object localization 

SoA State-of-the-Art  

GRIC Geometric Robust Information Criterion 

MLE Maximum Likelihood Estimator 

SIFT Scale-Invariant Feature Transformation  

DoG Difference of Gaussians  

RPC Remote Procedure Call  

JE Joint Entropy 

w.r.t. with respect to 

SAD Sum of Absolute Differences 
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1 INTRODUCTION  

The objective of the current deliverable is to describe the progress and the first 
implementation of the 3D reconstruction module of the V4Design project, as well as provide 
background information on the State-of-the-Art in a scientific manner. The 3D 
reconstruction module is a vital part of the V4Design pipeline. This document describes the 
challenges we face when dealing with data from the V4Design content provider partners and 
the solutions that have been developed. As such it relates to deliverable D2.1 “Initial visual 
and textual dataset creation and legal and ethical requirements” that provides an overview 
of the image content, and to deliverable D4.1 “Empirical study of visual content”, which 
highlights the issues present in this data. This deliverable also relates to deliverable D4.2 
“Basic version of interior and exterior localization algorithms and tool”, as will be explained 
in chapter 3 to 6. 

The deliverable starts with an overview of the relevant user and system requirements that 
drove the development of the 3D reconstruction and the enhanced model extraction 
algorithms. These requirements are listed in chapter 2. 

In order to be comprehensive, chapter 3 provides a description of a typical photogrammetric 
3D reconstruction pipeline and the State-of-the-Art of algorithms that contribute to the 
result: the extraction of 3D information from imagery. Camera estimation, sparse and dense 
reconstruction, 3D model generation and texturing are explained. 

In chapter 4 we elaborate on an how we tackle the important issue, encountered when 
processing V4Design input data: the fact that a significant portion of the data consists of 
video sequences. Multiple problems arise, such as the shot detection, blurry frames, and 
keyframe extraction. All three issues are thoroughly explained in the current document. We 
also show that a positive side effect of our solution is the possible detection of degenerate 
cases, i.e. videos for which 3D reconstruction is not feasible.  

Chapter 5 is an extensive chapter that deals with the implementation of the reconstruction 
module for the V4Design pipeline. An overview is provided of the available State-of-the-Art 
packages and experimental results are presented that reveal their pros and cons. We explain 
which choices were made and provide more information on the implementation. 

Chapter 6 deals with enhanced 3D model extraction. We explain how the input from the 
STBOL and AE&TP modules can improve the 3D models, both for segmentation (via masking) 
and texturing. We also highlight possible future improvements. 

Finally, chapter 7 concludes the document, focusing on the strong points of the developed 
3D reconstruction algorithms. 
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2 3D RECONSTRUCTION REQUIREMENTS 

The V4Design user requirements have been identified in D7.1,7.2 through the initial use case 
scenarios and user requirements. Some of them are associated and directly linked to the 3D 
reconstruction pipeline, as detailed in Section 2.1 and Section 2.2. 

2.1 3D reconstruction requirements  

A number of user requirements from D7.2 (Use cases, requirements and evaluation plan) 
have been associated with the SfM module (Table 1). Regarding UR_002, an architect wants 
to retrieve a 3D model from a set of input images. Subsequently, high quality textures are 
extracted as desired by UR_003. UR_8,B,C,D and E concerning various file formats is fulfilled 
by publishing the outputs conform existing specifications and standards. These formats can 
easily be exchanged using native i/o functions of existing software such as Rhinoceros. In the 
UR_11A, an architect wants access to a gallery of 3D models, which refers to the knowledge 
base that is populated through the proposed SfM pipeline. UR_13,14 pose requirements 
concerning the accessibility of the metadata of the inputs and outputs of the SfM pipeline. 
The 3D reconstruction process will accomplish these requirements by exporting metadata at 
key steps of the process including the sparse reconstruction, the dense reconstruction, the 
meshing and the model texturing. Similarly, UR_21 is fulfilled by not only populating the 
knowledge base with meshes but also with the dense point clouds. 

Table 1: Relevant user requirements reported in D7.1,7.2 for 3D Reconstruction 

User 
Requirement 

(UR) 

Associated 
High Level 

User 
Requirement 

(HLUR) 

Detailed description of the user 
requirement 

Associate 
Pilot Use 

Case 
(PUC) 

Functional 
or Non 

Functional. 
(FR/N-FR) 

MoSCoW 
framework 

based 
analysis 

UR_002 HLUR_201 
As an Architect I want to be able to 
retrieve 3D-Models 

PUC1 
PUC2 

FR MH 

UR_003 HLUR_202 
As an Architect I want to be able to 
retrieve high and reduced resolution 
textures 

PUC1 
PUC2 

FR MH 

UR_008 HLUR_204 
As a user I want various file formats 
as outputs: 

PUC1 
PUC2 
PUC3 
PUC4 

FR SH 

UR_008B HLUR_204 
As a user I want various output file 
formats such as OBJ and FBX for 3D 
models  

PUC1 
PUC2 
PUC3 
PUC4 

FR SH 

UR_008C HLUR_204 
As a user I want various output file 
formats such as JPG, TIFF, BMP and 
PNG for textures  

PUC1 
PUC2 
PUC3 
PUC4 

FR SH 

UR_008D HLUR_204 
As a user I want various output file 
formats such as vrmat and mdl for 
Materials 

PUC1 
PUC2 
PUC3 
PUC4 

FR SH 

UR_008E HLUR_204 As a user I want various output file PUC1 FR SH 
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formats such as Adobe swatches 
library for Colour Palette  

PUC2 
PUC3 
PUC4 

UR_011A 
HLUR_203 
HLUR_207 
HLUR_208 

As an Architect I want a UIX a detailed 
view of a Gallery of 3D model 
(with/without texture) and usage 
examples from other users 

PUC1 
PUC2 

N-FR MH 

UR_013 
HLUR_203 
HLUR_207 

As an Architect I want UIX: Detailed 
search by features: 
- Quality (3D model/ texture), Footage 
features, augmented data 

PUC1 
PUC2 

N-FR SH 

UR_014 HLUR_203 

As an Architect I want UIX: Download 
settings (saveable profiles): 
- Mesh quality/format, Texture quality/ 
format/ layers (checkboxes), Material 
definition file, Colour palette (e.g.: 
adobe swatches) 

PUC1 
PUC2 

N-FR MH 

2.2 Enhanced model extraction requirements 

Seven user requirements from D7.2 have been associated with the enhanced model 
extraction module of V4Design, namely the UR_002, UR_003, UR_004, UR_011A, UR_013, 
UR_017 and UR_018 (Table 2). Similar to the 3D reconstruction, UR_002, UR_003, UR_011A 
and UR_013 are fulfilled by segmented models only depicting building geometry. 
Additionally, the user can decide texture quality. The texture reuse discussed in UR_004 is 
met by integrating the texture superimposition of D3.2 (Basic version of aesthetics concept 
extraction algorithms & tools) onto the calculated models. The system allows the definition 
of multiple texture files for one mesh model, allowing the user to choose a texture of a 
model according to their needs. As far as UR_017 is concerned, the model recognition is 
focussed on building extraction in addition to the more general 3D reconstructions. Finally, 
in the UR_018, an Architect wants to have the "intelligence" of an architectural composition 
tool (combination of texture, colours, shapes). The enhanced model extraction and texturing 
identifies combo’s of mesh objects and textures and produces detailed building geometry. 
 

Table 2: Relevant user requirements reported in D7.2 for Enhanced model extraction 

User 
Requirement 

(UR) 

Associated 
High Level 

User 
Requirement 

(HLUR) 

Detailed description of the user 
requirement 

Associate 
Pilot Use 

Case 
(PUC) 

Functional 
or Non 

Functional. 
(FR/N-FR) 

MoSCoW 
framework 

based 
analysis 

UR_002 HLUR_201 
As an Architect I want to be able to 
retrieve 3D-Models 

PUC1 
PUC2 

FR MH 

UR_003 HLUR_202 
As an Architect I want to be able to 
retrieve high and reduced resolution 
textures 

PUC1 
PUC2 

FR MH 

UR_004 HLUR_202 
As an Architect I want to be able to 
reuse textures (Pattern extraction / 
seamless texture generation) 

PUC1 
PUC2 

FR CH 

UR_011A 
HLUR_203 
HLUR_207 
HLUR_208 

As an Architect I want a UIX a detailed 
view of a Gallery of 3D model 
(with/without texture) and usage 
examples from other users 

PUC1 
PUC2 

N-FR MH 
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UR_013 
HLUR_203 
HLUR_207 

As an Architect I want UIX: Detailed 
search by features: 
- Quality (3D model/ texture), Footage 
features, augmented data 

PUC1 
PUC2 

N-FR SH 

UR_017 
HLUR_203 
HLUR_205 
HLUR_206 

As an Architect I want texture and 
material recognition that might appear 
in images and videos. 

PUC1 
PUC2 

N-FR CH 

UR_018 
HLUR_203 
HLUR_208 

As an Architect I want to have the 
"intelligence" of an architectural 
composition tool (combination of 
texture, colours, shapes) 

PUC1 
PUC2 

N-FR CH 
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3 3D RECONSTRUCTION PIPELINE: OVERVIEW AND RELATED WORK 

The 3D reconstruction pipeline of V4Design is built according to well-established 
photogrammetric principles and consists of a set of consecutive steps that are executed 
automatically. Manual intervention is not necessary but can improve the results in certain 
situations. This chapter outlines the procedure and briefly describes the most important 
concepts of every step. 

3.1 Image and/or video content 

Every photogrammetric 3D reconstruction pipeline depends heavily on the quality of the 
input data. Deliverable D4.1 dealt with this issue in a thorough manner. In this document the 
requirements of the input data were described and the available data from content 
providers and outside sources was assessed. It was concluded that the most important 
requirements for good input data are: 

 The presence of a baseline between camera positions, since it is not possible to 
calculate depth information from images that are captured without changing camera 
position between recordings. 

 The rigidity of the recorded scene. Moving objects (people, cars, …) cannot be 
reconstructed but if the majority of the scene is rigid, they can be eliminated from 
the 3D reconstruction. 

 The presence of sufficient distinct features in the scene, i.e. no untextured, 
homogeneous surfaces. 

 The image quality and resolution have a direct impact on the 3D result. 

Most photogrammetric software packages or libraries focus on processing separate images, 
because their resolution is typically (much) higher than that of videos and the baseline 
constraint is also more easily fulfilled when the camera shoots individual pictures. However, 
in V4Design we deal with many datasets that contain video. The adaptation of the 
algorithms (such as the detection of shots and the extraction of keyframes) is important in 
this regard and will be described in chapter 4. 

3.2 Camera calibration via sparse matching and reconstruction 

Photogrammetric 3D reconstruction is built upon the principle of resection, in which the 
intersection between the backprojected rays from two or more images is computed. In order 
to execute this, two pieces of information are needed: the camera calibration (both internal 
and external) in order to compute the backprojected rays, and the correspondences 
between images through which these rays are constructed. 

The number of pixels in an image is so large that it is unfeasible to employ every pixel from 
every image to recover the camera calibration. Moreover, not every pixel is equally well 
suited for this task. That is why most photogrammetric pipelines recover the camera 
calibration through a so-called ‘sparse matching and reconstruction’ step. This is a set of 
algorithms, that typically consists of the following elements: 

1. Extraction and description of image features 
2. Matching of image features between images 
3. Recovery of the camera setup and reconstruction of a sparse point cloud 
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We will briefly describe these steps and highlight the relevant issues for V4Design. 

3.2.1 Image features 

Sparse feature points in the images are extracted and their appearance is described using a 
numerical descriptor. Widely used and well-performing extraction and descriptor algorithms 
are SIFT (Lowe, 2004) and SURF (Bay e.a., 2008), together with their variants (SIFT-GPU, 
SURF-GPU, ASIFT, DAISY, and so on). Feature extraction has a very high influence on the 
performance and success of the entire pipeline. For this reason, all photogrammetric 
reconstruction packages employ several settings to control the number of feature points per 
image. COLMAP (Schönberger, 2016) for example allows very in-depth adjustable thresholds 
and parameters for the feature extraction algorithm, while commercial packages typically do 
not disclose their internal algorithms. Their settings are typically limited to internal image 
resizing and selecting the maximum number of feature points per image. 

When dealing with video frames, it is also possible to employ video tracking instead of 
matching. Many tracking algorithms exist but literature agrees that the KLT tracker (Simon et 
al., 2004) and its variants (affine KLT, adaptive KLT, Conv KLT) (Ramakrishnan, 2016) 
outperform all others. Video trackers make use of the fact that the features to detect and 
match appear in images that are consecutive and close together. 

3.2.2 Matching strategy 

The relative camera motion between a set of images will be determined with the use of 
corresponding features. Standard exhaustive matching approaches attempt to match every 
image against every other image. Since in this approach the number of matching candidates 
increases quadratically with the image count, exhaustive matching is only viable with a 
relatively low number of images. It is beneficial to build a feature space database and apply 
approximate nearest neighbors search algorithms to speed up the matching of features in 
this space. This is of particular importance for relative matching strategies, such as proposed 
by Lowe (Lowe, 2004) in which the ratio of the best and second best match is compared to a 
threshold. For larger datasets, sequential approaches are appropriate for ordered images 
sets with consecutively captured images. For unordered datasets a vocabulary tree approach 
can be used (Schönberger, 2016) as well. Prior knowledge is also employed such as GPS 
coordinates in the EXIF data. Commercial software packages typically include multiple 
matching strategies depending on the input data. 

3.2.3 Camera recovery and sparse point cloud reconstruction 

The extracted image correspondences are used to estimate camera poses, camera internal 
parameters and 3D coordinates of image points, yielding a sparse point cloud. The 
computation is based on the inherent structure between two images: the epipolar 
geometry. Algorithms exist to compute this geometry from correspondences in the form of 
the fundamental matrix. If the internal parameters of the camera are known 
(approximately), the essential matrix, rather than the fundamental matrix, can be computed 
(Nistér, 2004), which requires fewer correspondences, is more stable and also directly yields 
a metric reconstruction, instead of a projective one that needs to be upgraded using self-
calibration. 
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 Two major pipelines can be distinguished to perform this step: incremental and global. An 
incremental pipeline is the most common approach that adds one image at a time, 
calculates the unknown parameters and thus grows the reconstruction. Due to a potential 
buildup of error, better known as drift, this process requires repeated operations of a bundle 
adjustment (Triggs, 2010) optimizing the camera parameters to minimize the reprojection 
error. This is a computationally expensive step that severely impacts the performance for 
large datasets. A global reconstruction pipeline follows an alternative approach and 
considers an entire view graph at the same time instead of incrementally adding images to 
the reconstruction (Jiang 2013). These algorithms estimate the relative orientation of all 
images in a single step by first computing the pairwise orientation of all image pairs and then 
combining this information into one graph. This way only a single iteration of the bundle 
adjustment is required at the end of the process. While much more efficient, this approach is 
more sensitive to outliers. To tackle the issues of efficiency, accuracy and robustness, recent 
efforts focus on the implementation of a hybrid reconstruction technique (Cui, 2017).  

3.3 Dense matching  

The result of the previous steps consists of the camera calibration and a sparse point cloud, 
containing the 3D reconstruction of the matched feature points. This point set is limited by 
design and is not a detailed or convincing representation of the filmed scene. Once a sparse 
representation of the scene has been completed, however, denser scene geometry may be 
recovered by matching as many pixels between images as possible. This process, called 
dense matching, is the most time-consuming part of the entire photogrammetric pipeline 
but can be sped-up by employing graphical processing hardware and parallel processing. 
Typical dense reconstruction pipelines produce depth maps from stereo pairs for all 
registered images. This relies on accurate exterior and interior camera parameters and 
epipolar geometry between images to constrain the search for matches (Remondino, 2017). 
Other methods include the use of region growing (Shin, 2010) or graph-cuts (Kolmogorov, 
2002). The reconstructed sparse point cloud can be employed as seeding areas for the 
region growing or to constrain the search range for the dense matching. It can be beneficial 
in this respect to slightly clean up the sparse cloud (manually or automatically, for instance 
using masks) in order to decrease the processing time of the dense matching and improve its 
results.  

3.4 Dense point cloud generation, modelling and texturing 

Depth maps are subsequently fused into a dense point cloud. It is important to note that the 
information contained in the depth maps is often redundant, as SfM-compliant images are 
usually taken with large overlap. Unnecessary overlap can increase the computational 
complexity of the mesh generation step. Moreover, low-quality images (e.g. with motion 
blur) may produce low-quality depth maps that harm the mesh generation process. That is 
why a selection of the most suited depth maps can be made to generate the dense point 
cloud (Tingdahl, 2011). 

The dense point cloud, a union of the points from the depth maps of the selected views, is 
then filtered, for instance using the quality maps (if available) of the dense matching or 
taking into account the angle between the normal and the view angle. A dense surface is 
then estimated from this fused point cloud, using surface reconstruction techniques, the 
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most common of which is Poisson reconstruction (Kazhdan, 2006). Finally the reconstructed 
mesh is colorized using texture maps, that combine and blend the input images (Lempitsky, 
2007). 
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4 PROCESSING VIDEO 

4.1 Issues with processing video w.r.t. images 

In V4Design we focus on the 3D reconstruction from video as well as images. The 
photogrammetric pipeline of chapter 3 is targeted towards the processing of images of the 
same scene. These images should be taken from different positions and should adhere to 
several important constraints that were listed and described in deliverable D4.1. 
Photogrammetric pipelines typically don’t focus on processing video. In such cases, the user 
is typically instructed to extract separate frames from the video and feed these to the 
photogrammetric package. 

There are three important issues with this strategy. The first issue is the fact that videos 
(especially those by a professional director) contain multiple and sometimes quickly varying 
shots. Secondly, due to the rapid recording of consecutive image frames and the motion of 
the camera, blurry frames are rather common. Finally, the extraction of optimal frames (so 
called keyframes) for the photogrammetric processing is an important issue.  

The two first issues are discussed at length in D4.2. We will only briefly address them here. 
The third issue (keyframe extraction) will be discussed in detail. The final paragraph of this 
chapter will explain more details on the actual implementation for the V4Design pipeline. 

4.2 Shot detection  

In many cases videos and movies, directed by professionals, contain shots of multiple scenes 
and as such are not directly useful for photogrammetry. It is therefore important to pre-
process these videos. In a preliminary step the various shots are first delineated and can 
then be further processed to extract proper frames for reconstruction (see D4.3). 

The V4Design pipeline already offers an important advantage over other systems, in that the 
STBOL component will evaluate the videos and determine where interesting content, such as 
buildings, is recorded. This results in a set of frames and even masks in these frames that 
should be evaluated for 3D reconstruction. 

However, it might be the case that the STBOL component misses some frames in which the 
object of interest is present, or (more common) that the video records other parts of the 
same scene before or after the highlighted frames. It is advantageous to include these 
frames in the 3D reconstruction processing because the camera calibration of a video 
sequence will be more accurate and complete if a larger area with more depth variation is 
filmed, and/or if the camera motion is larger, leading to larger baselines and therefore 
better intersection angles. That is why we want to extend the detected frames to the entire 
shot they are part of. This shot-detection algorithm is explained in this paragraph and makes 
use of FFmpeg (FFMPEG, 2019), an open source library that is used to handle video streams 
efficiently. 

4.2.1 Hard cuts: SAD-score and Histogram 

The first shot-detection algorithm we employ is straightforward but very fast. It makes use of 
a threshold-based scene detector to segment the shots from each video. To detect the 
various shots a scene score is calculated between consecutive frames, starting from the 
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frames that were highlighted by the STBOL component and going both forward and 
backward in time. The scene score is determined by the sum of absolute difference (SAD) 
between all pixels of consecutive frames. The resulting value varies between 0 and 1 and 
may be used as a measure for similarity between two consecutive image blocks. A video cut, 
and thus a new shot, is assumed when the scene score exceeds a certain threshold. 
Extensive testing was done on videos provided by the content providers and it was 
determined that a threshold of 0.3 was the optimal value.  

 

Figure 1: Shot detection using SAD on het Daily Drone video of St Michaels 

A first example is a video from the Daily Drone series by Deutsche Welle, depicting video of 
the St. Michael’s church in Hamburg. There are clear shot cuts in the video, at frames 1, 404, 
547, 762 and 903. Figure 2 shows images around frame 762, where the shot cut is detected. 

 

 

Figure 2: Consecutive frames 760, 761, 762 and 763 of the St Michael’s church Daily Drone 
video. The scene cut between 761 and 762 is detected automatically. 
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Figure 3: Shot detection using SAD on "Microtopia" 

A less straightforward example is that of the train sequence in Microtopia, a movie by SLS. It 
shows footage, filmed on-board a train, filming city buildings. The shot cut detection results 
are shown in Figure 3 and clearly depict peaks that come in pairs. This is due to the specific 
content of the movie: the trains pass through underpasses, bridges and short tunnels, and 
our algorithms therefore detect a cut before and after these short passages. An example 
around frame 316 is shown in Figure 4. The first cut is detected between the first and second 
row (frame 316) and the second cut between the third and fourth row (frame 330). 

Methods that are based on colour and intensity histograms are described in literature (Patel 
1997, Tsekeridou 2001). These algorithms compute the histogram of the entire image and/or 
columns of rows and compare them to the next frame, using a chi-squared value, computed 
according to Equation 1 in which we sum the influence of every bin j of histogram H for 
frames t and t+1. However, our experiments clearly show a much better performance for the 
(slightly more computationally expensive) SAD method. 

𝜒2 = ∑
(𝐻𝑡,𝑗 − 𝐻𝑡+1,𝑗)

2

(𝐻𝑡,𝑗 + 𝐻𝑡+1,𝑗)
2

𝑗

 

Equation 1: Computing the chi-squared value, comparing the histogram of frame t and t+1. 
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Figure 4: Frames of “Microtopia” train sequence with a shot cut between the first and 
second and between the third and fourth row 

4.2.2 Fade cuts: Mutual Information 

The SAD method of the previous paragraph works well for hard cuts. However, modern 
(edited) videos also regularly show smooth cuts with fade-ins and fade-outs. These cuts are 
not detected by the SAD method because the pixel information gradually changes over a 
length of several frames. A possible solution to this is to make use of an Information Theory-
based method, such as the one proposed by Cernekova e.a. (Cernekova, 2006). In their 
method the mutual information (MI) and joint entropy (JE) between consecutive video 
frames is computed. MI is a measure for the correspondence between two sets of data and 
also takes into account the information that is carried by each frame at their overlap: MI 
increases when the amount of shared information is large. The JE is related to the MI, in that 
it is the sum of the entropy of both frames minus the MI.   

The MI and JE of two consecutive frames can be computed using so-called carrying matrices 
that store the number of pixels that change from intensity i to intensity j for every possible 
value of i and j (0 <= i,j < 256). The MI and JE are then computed as in Equation 2. 
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𝑀𝐼𝑡,𝑡+1 = − ∑ ∑ 𝐶𝑡,𝑡+1(𝑖, 𝑗) log (
𝐶𝑡,𝑡+1(𝑖, 𝑗)

𝐶𝑡(𝑖, 𝑗)𝐶𝑡+1(𝑖, 𝑗)
)

𝑗𝑖

 

𝐽𝐸𝑡,𝑡+1 = − ∑ ∑ 𝐶𝑡,𝑡+1(𝑖, 𝑗) log (𝐶𝑡,𝑡+1(𝑖, 𝑗))

𝑗𝑖

 

Equation 2: Computation of MI and JE values for two consecutive frames 

In our experiments we find that the MI value is good at detecting hard cuts, but not as good 
as the SAD method, as can be seen from comparing Figure 5 with Figure 1. However, the JE 
value can be used to predict fade cuts. An example is shown in Figure 6 which contains the 
graph of the JE score for a video showing footage of the Cathedral Notre-Dame in 
Strasbourg. More than ten fade cuts are present in this video, several of which can be 
detected from the JE score by looking for sudden large increases in the JE value. Two 
examples of such fades are shown in Figure 7. Notice how these frames typically contain 
information from two shots and therefore result in a large JE score. 

 

Figure 5: Mutual Information score for Daily Drone video of St. Michael’s church 
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Figure 6: Joint Entropy score for the video “Notre Dame in Strasbourg” with several fade cuts 
that are visible in the curve 

 

Figure 7: Frames 2994 and 4765 where a fade cut is detected. These frames clearly contain 
information from two different shots, yielding large increases in the JE score. 

4.3 Dealing with blurry frames 

When video sequences are recorded in a freehand style, one can never totally exclude the 
possibility of blurred frames. In most cases this blurriness is actually motion blur, which is 
the result of sudden motions of the camera. Blurred frames cause problems for 
photogrammetric reconstruction techniques, mostly because the amount of matched or 
tracked features drops dramatically when such a frame is encountered. It is therefore best to 
try to detect these frames beforehand and deal with them. 

There are two options to deal with blurry frames. The simplest solution is of course to simply 
discard them before extracting keyframes. A second option is to incorporate their detection 
into the keyframe extraction algorithm itself. In both cases, however, it is imperative that we 
can discern blurry frames from their sharp counterparts.  

A possible technique to spot blurred frames automatically is based on comparing the image 
sharpness of nearby frames. The value for the sharpness S of an image can for instance be 
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computed as the mean square of horizontal and vertical intensity gradients, evaluated as 
finite differences: 

𝑆 =  
∑ ∑ (𝐼(𝑖 + 1, 𝑗) − 𝐼(𝑖, 𝑗))

2𝐻−1
𝑗=0 + (𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗))

2𝑊−1
𝑖=0

𝑊𝐻
 

Equation 3: Sharpness of a frame from global intensity gradients 

where W and H are the width and height of the image and I is the intensity value matrix of 
the image. 

 

Figure 8: Frame 8156 and 8157 of the Akropolis video sequence. The second image clearly 
suffers from motion blur. 

 

Figure 9: Sharpness and detected blurry frames for the Akropolis video sequence 

The value of such a sharpness measure depends on the image content and thus no absolute 
threshold can be used to detect blurry frames. For example an image of a plastered wall of a 
modern building has a much lower absolute S-value than that of a wall of an ancient Greek 
temple. However, if one compares the sharpness of frames in each other’s neighbourhood, 
then conclusions can be drawn. Due to motion blur, the gradient strength in blurred images 
is significantly lower than in the other images. Figure 8 shows two frames of the Akropolis 
video sequence. The second image suffers from motion blur, which is especially apparent 
when looking at the building, which contains a lot of high-frequency information. Figure 9 
shows a plot of the sharpness values for the relevant frames of this video sequence. A 
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significant drop is noticeable around frames 8157 and 8161. The images in Figure 8 depict 
frames 8156-8157 where the drop in sharpness happens. The blurred frames are detected 
and can be removed from the sequence before further processing. 

Another example deals with video from content providers. DW’s DailyDrone video of the 
Bauhausuniversität in Weimar was recorded during a cloudy day, which leads to longer 
opening times of the camera in order to capture enough light. However, longer opening 
times and sudden motions lead to motion blur, causing sudden drops in the sharpness  
value. This is apparent from the sharpness curve in Figure 10. The sudden drops in this plot 
all correspond to blurry frames, an example of which is shown in Figure 11 and Figure 12. 

 

Figure 10: Sharpness of DW’s Daily Drone video of the Bauhaus in Weimar. Several sudden 
drops indicate blurry frames, caused by motion blur. 

 

Figure 11: Consecutive frames 1017 and 1018 from DW’s Bauhaus video, where a sudden 
drop in sharpness was detected. The right image is blurred. 
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Figure 12: Cut out details of frames 1017 and 1018, showing a sudden motion blur. 

An alternative approach also makes use of the image content but, instead of using a global 
value as in Equation 3, makes use of the results of a feature detection algorithm. The 
detector we look for must adhere to the following specifications: 

 It must be a very efficient detector, because the detection of blurry frames is only a 
pre-processing step, must be performed for all frames and therefore should be 
concluded as quickly as possible. 

 It should be a detector that focuses on local intensity changes. This rules out 
detectors such as SIFT or SURF because these typically extract blob-like features, 
spanning areas with continuous intensity. 

 It should be a detector that allows for many features in the same neighbourhood and 
should therefore not suppress multiple detections in small areas. 

Based on the above specifications we chose the FAST (Rosten, 2010) detector, an algorithm 
proposed by Edward Rosten.  
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Figure 13: FAST feature detection algorithm (Rosten, 2010) 

The algorithm (shown in Figure 13) starts from the premise that a pixel p is a corner feature 
if there exists a set of n contiguous pixels in the circle (of 16 pixels) which are all brighter 
than I(p)+t, or all darker than I(p)-t (with t a given threshold). The algorithm speeds up the 
test by examining only the four pixels at 1, 9, 5 and 13. If p is a corner, then at least three of 
these must all be brighter than I(p)+t or darker than I(p)-t. The full segment test criterion can 
then be applied to the passed candidates by examining all pixels in the circle. This algorithm 
clearly uses local intensity information and is very efficient: it reaches speeds of 10fps or 
higher. The third requirement is achieved by omitting the standard non-maximal 
suppression step that typically follows the algorithm to select the best feature amongst its 
neighbours in a region. The result is a detector for which the number of detected features is 
a very good indication of the blurriness of the image, especially compared to neighbouring 
frames. 

An example is shown below. Figure 14 shows the detected features in a frame of the 
Bauhausuniversität video from DW. It is clear they are located on local intensity gradient 
maxima. Figure 15 shows a graph of the number of detected FAST features for the entire 
video sequence. We clearly detect significant drops that correspond to the drops in Figure 
10 but are sometimes more outspoken. Figure 16 shows frame 484 where such a drop 
occurs. It clearly suffers from motion blur. 
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Figure 14: Extracted FAST features in frame 1356 of the Bauhausuniversität video 

 

Figure 15: FAST Feature detection yields a measure of sharpness for every frame. 
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Figure 16: Frame with plenty of motion blur, detected by the blurriness algorithm, based on 
the FAST feature extractor. 

4.4 Image and video sequence analysis and keyframe selection 

4.4.1 Video and photogrammetric reconstruction 

Video recordings yield image sequences with frame rates of 25 (PAL) or 30 (NTSC) frames per 
second. If the video camera does not move at very high speed (which would cause blurring 
effects anyway, more on which was written in paragraph 4.3) this means that consecutive 
video frames are typically very close together and thus very much alike. This gives us an 
important advantage for the computation of matching points between images because such 
points are typically located close to the coordinates in the previous image and very little 
distortion has to be dealt with. This makes it possible to either limit the search range for 
matching points or to employ a different strategy in which we track features rather than 
match them. Both strategies are valid and fast because we can make use of features that can 
be extracted efficiently, such as FAST-features for matching or KLT-features (Shi, 1994) for 
tracking. 

 

Figure 17: Two consecutive frames of the video sequence Bauhaus from DW 
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Unfortunately, the fact that consecutive images are so similar also has its drawbacks. Inspect 
Figure 17. This figure shows two consecutive frames of a video sequence of Deutsche 
Welle’s Daily Drone video, depicting part the Bauhaus. If we attempt to compute the 
epipolar geometry between these images we notice that this process is very sensitive to 
noise. 

 

Figure 18: Two possible solutions to the Fundamental Matrix that are equally valid. The 
yellow lines show the epipolar lines indicating the camera movement. 

Two possible solutions of the epipolar geometry are shown in Figure 18 and both are equally 
valid. To verify this, inspect the easily identifiable points through which the epipolar lines go 
(for instance: corner of a building, intersection on the pavement, …) and verify that the 
corresponding point in the other image lies on the corresponding epipolar line. This is the 
case for both solutions of the epipolar geometry, even though they differ very much. The 
images shown in this figure depict a scene with plenty of 3D information. Yet we cannot 
compute the epipolar geometry stably because of the small baseline: the two camera 
centres are too close together, so the translation between the cameras is very small. This 
means that the camera setup resembles that of a purely rotating camera and hence the 
relation between corresponding pixels can also be explained by a homography as shown in 
Figure 19. 
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Figure 19: The motion between the consecutive frames can be explained by a homography. 

The computation of epipolar geometry breaks down if images are too close together. The 
same is true for projective camera estimation where newly computed 3D points and 
cameras suffer from large uncertainties due to the small baseline between cameras. This 
means we have to find a technique to increase the baseline between images that are used 
for structure-and-motion recovery. A possible solution is not to deal with consecutive 
images but to select every n-th frame of the video sequence. This is not a good idea because 
it is impossible to choose a value of for n that will work for all video sequences. It would 
depend on the velocity of the camera, the frame rate and the distance to the scene. These 
properties could even change during the recording of the video. Imagine a camera filming a 
scene, standing still every once in a while and then continuing. The value of n would have to 
be adapted constantly. A possible solution for this makes use of the concept of the 
Geometric Robust Information Criterion (GRIC), introduced by Torr (Torr, 1997). 

4.4.2 GRIC 

The concept of GRIC was introduced to solve a particular problem: how can we find out if a 
certain scene is dominantly planar and does this have an impact when computing the 
epipolar geometry of an image pair depicting such a scene? In this case, the transformation 
between the images can be described by a general projective transformation, modeled via a 
homography H. Since every point correspondence yields 2 equations (one in x and one in y), 
only 4 points are needed to compute H. All other correspondences can be predicted from 
these 4. This would suggest that only 4 independent point matches can be used to compute 
F but it is known (Hartley, 2004) that we need at least 7 correspondences. This means that 
there are 3 DOF in F we cannot determine without information of points outside the plane. If 
no such points are available, these remaining DOF are filled by noise on the extracted 
features.  

A similar situation arises when the baseline between two images (of any scene) is small, 
because this situation resembles a setup with a purely rotating camera, which can also be 
described with a homography. The top and bottom image-pairs of Figure 18 depict the same 
images but with a different fundamental matrix. Both matrices were computed with the 
same RANSAC algorithm. The only difference is a small perturbation on one of the 
parameters (i.e. the outlier distance which was changed from 2 to 2.2 pixels). The resulting 
F-matrices are quite different which is apparent from the epipolar lines. If one compares the 
epipolar lines in any of the image pairs however, points on corresponding lines are always in 
correspondence. This means that both solutions are equally valid and no claim can be made 
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as to the quality of the result. One can intuitively understand this as follows. Take an 
arbitrary pencil of lines in one image. If a homography describes the relation between the 
two images, then every line can be transformed to the other image and all points on the line 
in the first image will lie on the transformed line in the other. 

A first step in solving the small baselines problem is the ability to detect this situation. Since 
such images can be transformed into each other via a homography, one could compute such 
H matrix and inspect the residual error. If this error is below a threshold, one could consider 
the baseline to be too small. However, it is unclear which value one should choose for this 
threshold. A better and more stable approach is to take into account not only the residual 
error but also the degrees of freedom. This can be done by computing and comparing values 
of the Geometric Robust Information Criterion for different models.  

The problem of determining whether the baseline between images is too small, based on 
correspondences between these images is a specific example of a more general problem, 
which can be stated as follows. If one has a data-set and different models that can explain 
the data, then which model should one choose? Already in the middle ages a Franciscan friar 
called William of Ockham (Arriew, 1976) shed some light on this. His theory, known as 
Occam’s Razor states: 

One should not increase, beyond what is necessary, the number of entities required to 
explain anything. 

In essence this theory means that if two or more theories explain the observations equally 
well, one should always choose the simplest one. For the case of multiple view geometry, 
Torr proposed a mathematical description of this principle that is completely general, based 
on Akaike’s information criterion (Akaike, 1974) and Rissanen’s minimum description length 
(Rissanen, 1978). It calculates a score function for each model taking into account the 
number of inliers, outliers, the residuals, the standard deviation of the error, the 
dimensionality of the data, the number of the parameters and dimensionality of the model. 
The general formula is given by Equation 4 

𝐺𝑅𝐼𝐶 =  ∑ 𝜌(𝑒𝑖
2) + (𝑛𝑑 ln(𝑟) + 𝑘 ln(𝑟𝑛)) 

𝜌(𝑒𝑖
2) = min (

𝑒𝑖
2

𝜎2
, 2(𝑟 − 𝑑)) 

Equation 4: Geometric Robust Information Criterion 

In which 

 𝑛 is the number of data (inliers + outliers) 

 𝑒𝑖 is the residual for every correspondence 𝑖.  For a homography H for instance this is 
the distance between point m2 and the transformed corresponding point Hm1: 

𝑒𝑖 = 𝐷(H𝑚1, 𝑚2) + 𝐷(𝐻−1𝑚2, 𝑚1)  
For a fundamental matrix F the error is computed as the sum of the distances to the 
epipolar lines: 

𝑒𝑖 = 𝐷(𝑙2=F𝑚1, 𝑚2) + 𝐷(𝑙1=𝐹𝑇𝑚2, 𝑚1)  
 𝜎 is the standard deviation on the measurement error. 

 𝑟 is the dimensionality of the data or the amount of observations. In the case of 2 
views, 𝑟 is 4 (two times two coordinates). 
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 𝑘 is the number of model parameters. For a homography 𝑘 is 8, for a fundamental 
matrix it is 7. For an essential matrix it is 5. 

Inspecting Equation 4 we clearly identify two parts. The first part is the goodness of the fit. 
How well does a model describe the data? This is given by the residual error of the 
corresponding matches. Of course, this residual alone does not suffice since a complicated 
model that contains a simpler model always explains the data better since it has more 
degrees of freedom. In the case of a small baseline for instance, the 3 remaining degrees of 
freedom of a computed fundamental matrix are estimated from noise in the data, allowing 
for a lower residual score. 

That is why the GRIC model has a second part 𝑛𝑑 ln(𝑟) + 𝑘 ln(𝑟𝑛) which takes into account 
the so called parsimony of the model. This means that the more complex a model is, the 
higher this penalty term will become. If we want to choose a more complex model over a 
simpler one, it should explain the data much better, to the extent that its residual error 
should be so much lower than the residual error of the simpler model that this reduction 
nullifies the extra cost associated with the higher complexity. 

Let us apply this algorithm to the problem of a pair of images with a small baseline. We 
execute the following algorithm. 

 Compute the fundamental matrix between the two images, as well as the inliers and 
outliers using F-RANSAC. 

 Compute a non-linear optimization of F using the inliers only, e.g. with a MLE 
(Maximum Likelihood Estimator) (Aldrich, 1997) 

 Compute a planar homography matrix H. 

 Compute H-GRIC and F-GRIC with Equation 4 using all the inliers of F. The latter is 
absolutely necessary because if only inliers for H are used to compute it, the H-GRIC 
value will always be lower than the F-GRIC because of its lower complexity. 

 Compare both GRIC values. If H-GRIC is lower than F-GRIC, then the preferred model 
to explain the data should be H. If the F-GRIC value is lower, then there was sufficient 
camera motion to compute the F-matrix correctly. 

4.4.3 Selecting keyframes 

We can employ the GRIC algorithm, explained above, to solve the problem of selecting the 
optimal frames in a video sequence for photogrammetric reconstruction. To do so we 
introduce the concept of keyframes. We select the first frame in the sequence as the first 
keyframe and track features to the second frame. We estimate the fundamental matrix and 
a homography between these frames and compute the corresponding F-GRIC and H-GRIC 
values. If the H-GRIC is lower than F-GRIC, the homography describes the data better than F 
and we track the features to the next frame in the sequence where we perform the same 
process now between the first and the third frame. As long as the H-GRIC is lower, we 
continue to advance in the sequence. Once the F-GRIC yields the lowest penalty, the 
epipolar geometry can be reliably estimated and we could select the frame where this 
happens as the new keyframe. Note: in case the internal camera calibration parameters are 
known (or can be reliably estimated), the essential matrix E can be computed instead of the 
fundamental matrix F, which can avoid problems with certain degenerate cases. 
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However, in order to reduce the processing time of the photogrammetric camera estimation 
and the dense matching, we might want to progress a little further in the sequence. For 
every frame we track the features and estimate epipolar geometry w.r.t. the previous 
keyframe. While more than 90% of the inliers at the crossing-point are still matched, we 
continue. When we drop under this 90%, we select this frame as the new keyframe. 

4.4.4 Detecting degenerate sequences 

Deliverable D4.1 (Empirical study of visual content) described in detail how sequences with 
degenerate motion types are not suitable for 3D reconstruction. The most common of these 
are movies with a pure rotation around the optical center, so-called panorama sequences. 
Since there is no baseline between the frames, it is mathematically impossible to extract 3D 
information from these sequences photogrammetrically. However, it was also shown in D4.1 
that these sequences are quite common, especially in older material. The content from the 
content providers in V4Design also contains several examples of such data. It would be 
beneficial if we could detect such unsuitable movies early and notify the user. This can be 
achieved with the same GRIC-based algorithm described above! The relation between 
images in panorama sequences can mathematically be described by a homography: this 2D 
projective transformation suffices to capture the change from one panorama image to 
another. Since the parsimony of the homography model is lower than that of a fundamental 
matrix (corresponding to 3D motion), the homography will be chosen for all images in a 
panorama. If no turning point between H- and F-GRIC is detected (i.e. the H-GRIC is always 
lower), we can deduce that the camera underwent a panorama-like rotation and that the 
movie is unsuitable for 3D reconstruction. 

4.5 Implementation and examples 

Commercial as well as open source photogrammetric solutions primarily focus on processing 
images, rather than videos. The V4Design project also wants to reconstruct 3D models from 
video sequences from a wide variety of sources. When dealing with video, photogrammetric 
packages typically instruct the user to extract every nth frame and feed the resulting images 
to the reconstruction algorithms. We already showed earlier in this chapter that this is not a 
good solution. 

4.5.1 Implementation 

The implementation in the V4Design pipeline combines the different building blocks that 
were discussed in D4.1 and in this deliverable. It follows the pipeline depicted in Figure 20.  
In a first stage, the video is split into different shots, using the shot-detection algorithms of 
paragraph 4.2. This ensures that no hard cuts are present in the video to be processed. 
Secondly, the separate shots are fed to a block that analyses the sharpness of the 
consecutive video frames, as discussed in paragraph 4.3. Only frames that are clearly blurry, 
i.e. showing a clear drop in sharpness, are flagged and eliminated from the remainder of the 
processing pipeline. The next step then deals with the extraction of suitable keyframes that 
can be fed to the photogrammetric algorithms.  
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Figure 20: Video handling pipeline 

 

Figure 21: Detailed keyframe extraction 
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This extraction follows the logic described in paragraph 4.4. The procedure is depicted in 
Figure 21. It employs a tracking strategy, rather than a matching strategy, in which we 
exploit the fact that consecutive video frames are typically very close together. The selection 
procedure is based on the GRIC score, in the sense that a new keyframe is only selected 
when there has been sufficient camera motion. In order not to limit the number of 
keyframes, we keep tracking the features and select a new keyframe when the number of 
tracked features falls below 90%.  Two additions to this basic strategy are also implemented. 
First, if we notice a sudden drop in tracked features from frame n to frame n+1, we check 
the local sharpness score. In many videos such lower sharpness is due to motion blur, which 
typically lasts for several frames and hence might not detected in the blurriness detector. If 
frame n+1, or its k successors, show a significantly lower sharpness than frame n and frame 
n+k, we attempt to track the features from frame n to frame n+k in order to overcome the 
blurry part of the video. 

A second addition is the detection of degenerate motion. As described in paragraph 4.4.4, a 
pure rotation (panorama recording) is not suitable for 3D reconstruction. However, if this 
panorama-shot is short and is preceded and followed by actual camera motion, 
photogrammetric pipelines are able to deal with this, by reconstructing the preceding and 
following parts in 3D and estimating the panorama cameras afterwards. That is why we 
implemented an algorithm that is shown as part of Figure 21. The tracked features are fed to 
the keyframe selection algorithm as explained above. If the video only contains a panorama, 
no frame will be found where the F-GRIC-score is lower than the H-GRIC score. Such videos 
are automatically flagged. When we do find a crossing point between the GRICs (indicating a 
3D motion), we compare the number of  tracks to the features extracted in the previous 
keyframe. If this is above a certain threshold (currently set at 50%), we accept the new 
keyframe. Even in the case of a short intermediate panorama, the photogrammetric pipeline 
will still be able to reconstruct the scene. If the number of tracks falls below the threshold, 
we decide that this panorama part is too large for the 3D reconstruction to succeed. 

4.5.2 Bauhaus - Dessau example 

The first example we will discuss is from a Daily Drone video from content provider Deutsche 
Welle. It depicts the Bauhaus in Dessau, Germany. The video is about 1 minute long (1548 
frames) and contains several pauses as is clearly shown in Figure 22, which depicts every 10th 
frame of the video. A simple strategy to extract every nth frame of this video is doomed to 
fail.  

The first operation we employ is a shotcut detection. In this case, the video consists of a 
single shot, which is subsequently fed to the module responsible for computation and 
analysis of the sharpness of the video. The result is shown in Figure 23. Several frames show 
a sudden drop in sharpness, indication of blurriness. This for instance the case for frame 32, 
depicted in Figure 24. 

This information is now sent to the actual keyframe extraction algorithm. This procedure, 
explained above, first computes the tipping point where the H-GRIC score exceeds the F-
GRIC score, indicating the point where the 3D motion of the camera is too large to describe 
the resulting images with a homography. From that point on, we keep tracking the features 
until less than 90% survives, at which point we select a new keyframe. Figure 25 shows an 
example around frame 750.  
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Figure 22: Every 10th frame of the Bauhaus video from Deutsche Welle 

 

Figure 23: Sharpness of the Bauhaus video, showing several blurry frames 



D4.3 – V1.5  

 

Page 37 

 

Figure 24: Blurry frame, detected at frame 32 

 

Figure 25: F-GRIC (red) and H-GRIC (blue) score around frame 750 

The previously extracted keyframe is frame 725. When features are tracked and GRIC scores 
are computed, the H-GRIC score is lower than the F-GRIC at first, indicating little motion. At 
frame 754 we see the tipping point where H-GRIC > F-GRIC. These two frames are shown in 

HGRIC > FGRIC 

tracks < 90% 
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Figure 26. Note that especially the foreground (ground) differs and that there is parallax 
between the front wall and the buildings in the background, which is an indication of 3D 
information and motion. However, frame 754 is still rather close to 725 and we could 
probably skip more frames without jeopardizing the 3D reconstruction. Therefore we 
continue to track until 10% of the tracks of 757 have disappeared. This happens at frame 
782, which is selected as the new keyframe. In the end, the algorithm extracted 27 
keyframes, shown in Figure 27.  

 

Figure 26: Tipping point: H-GRIC > F-GRIC at frame 754 
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Figure 27: Selected keyframes for the Bauhaus video 

These keyframes are fed to the 3D reconstruction algorithm. The result is shown in Figure 
28.  

 

Figure 28: Resulting 3D model from the keyframes of the Bauhaus video 

4.5.3 Kochuu: example of panorama 

A second example we will describe shows the result on a video with a degenerate motion 
sequence. The video Kochuu from Solaris Film Productions contains several shots that might 
be of interest to V4Design users, but that are, unfortunately, not suitable for 3D 
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reconstruction purposes. An example of such is shown in Figure 30 where we depict every 
10th frame of the shot. The movie shows a built structure around a pond. The camera rotates 
on the spot and hence performs a panorama motion, unsuitable for 3D reconstruction.  

 

Figure 29: H-GRIC (blue) and F-GRIC (red) of the panorama shot of Kochuu. 
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Figure 30: Every 10th frame of a shot in the movie Kochuu from SfP 

The keyframes module computes and compares the H- and F-GRIC. Results of this are shown 
in Figure 29. Because the motion is degenerate, the algorithm should always prefer the H-
model over the F-model because it is less complex. This expected result is indeed achieved, 
because the H-GRIC value always lies below the F-GRIC. Note that the absolute value of both 
GRICs steadily decreases because the number of tracked features decreases as well: indeed, 
at the end of the shot, no more features are present that were visible in the first frame. This 
indicates that this shot is unsuitable for 3D reconstruction. 
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5 3D RECONSTRUCTION: IMPLEMENTATION AND COMPARISON OF 
PHOTOGRAMMETRIC RECONSTRUCTION SOLUTIONS 

The following chapter describes the State-of-the-Art of available photogrammetric software.  
The goal is to investigate whether existing components can be used to extend the State-of-
the-Art. An empirical study is conducted with realistic data from V4Design to evaluate the 
different steps of the reconstruction pipeline of each software package. 

5.1 General overview 

Several photogrammetric software packages are available, ranging from semi-automated to 
fully automated procedures. This study focuses on the evaluation of methods that fully-
automatically produce point cloud data, mesh geometry and high quality textures. More 
specifically, the emphasis of the work is on determining the best-fit methods to process the 
raw imagery and videos discussed in Deliverable 4.1 to a set of 3D outputs. This includes the 
reconstruction of objects and buildings from both close-range and oblique imagery.  

5.1.1 Software 

Both Open source software as well as commercial applications are considered. While 
numerous photogrammetric libraries and software exist, it suffices to evaluate only the best 
performing solutions from the industry and the academic community. The selection was 
limited to general-purpose reconstruction pipelines as the raw imagery and videos can 
originate from varying sources. For the evaluation of the commercial software Metashape 
(Agisoft, 2018), RealityCapture (CapturingReality, 2016) and 3DF Zephyr (3Dflow, 2014) are 
selected based on their performance. Another popular software, Pix4D (Pix4D, 2011), was 
not evaluated as it does not support command line interfacing which is necessary for the 
integration of the 3D reconstruction in the V4Design pipeline. For the evaluation of the Open 
source software, COLMAP (Schönberger et al., 2016) and Meshroom (AliceVision, 2019) are 
considered.  

5.2 In-depth comparison of software tools and libraries 

In this section, the advantages and disadvantages of the tools in the available software are 
discussed. More specifically, the opportunities are discussed to integrate functionalities of 
the different software into the V4Design reconstruction pipeline. 

Table 3: Overview user adjustable tools of the evaluated photogrammetric software. 
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Meshroom - + - + - + - - - + 



D4.3 – V1.5  

 

Page 43 

5.2.1 List and details of compared tools 

An initial comparison between the software is in their basic functionalities and parameter 
accessibility. Figure 31 depicts a set of useful functionalities to the reconstruction pipeline. 
For instance, batch processing is a necessity since the V4Design procedure will be 
simultaneously used by numerous users and content providers. The reconstruction box, 
masking and filtering capabilities reduce outliers and mitigate noise. The ability to influence 
feature extraction, camera models, matching methods, bundle adjustments and integration 
of Ground Control points is essential to produce proper models from the high variance data 
inputs from the content providers.  

Table 3 depicts the ability of each software package to influence the respective parameters. 
As expected, do the commercial applications embody significantly more functions than their 
Open source counterparts. However, the Open source solutions allow more parameters to 
be influenced by the user.  An interesting aspect is that some of the functionalities of 
Meshroom and COLMAP are complementary. This is especially useful for the V4Design 3D 
reconstruction pipeline since functions from both libraries can be combined to extend the 
current State-of-the-Art. The separate functions of the SfM pipeline are further investigated 
in the following sections to evaluate which code can be applied to the V4Design project. 

5.2.2 List and details of compared methods 

The functions of each software package are evaluated for the subsequent steps in a general-
purpose SfM pipeline (Table 1). This includes the feature extraction, matching, alignment, 
dense reconstruction, meshing and texturing as discussed in paragraph 3. These functions 
are dependent on the type of SfM that is being employed. As previously stated, incremental 
SfM’s are very popular. Typically, the iterative process is initialized by aligning as many 
images as possible in a graph followed by a geometric verification. The resulting scene graph 
is used to start the reconstruction. Incrementally, a two-view reconstruction is selected, new 
images are registered, new scene points are triangulated and outliers are filtered. At the end 
of each iteration, the reconstruction is refined by updating the bundle block adjustment. 
Alternatively, global reconstructions are also presented. In this strategy, images are matched 
pairwise and the essential matrix is computed, from which the relative orientation can be 
derived. These orientations are then matched throughout the entire image set. Both 
COLMAP, RealityCapture and 3DF Zephyr implement this approach, which allows them to 
process a wide variety of image sequences.  

 

Figure 31: COLMAP’s incremental Structure-from-Motion pipeline (COLMAP, 2016) 
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Table 1: Overview functions of the evaluated Photogrammetric software. Functions of 
commercial software are often unknown. 
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MetaShape Incremental - - - - - - 

3D Zephyr Incremental/Global DoG 
Based 

Sequential 
Circular 
Unordered 
Approximate 
Grid 
 

P3P 
DLT 

Linear LS - MSAC 

RealityCaptre - - - - - - - 

COLMAP Incremental SIFT Exhaustive 
Sequential 
Vocabulary 
Tree 
Spatial 
Transitive 
 

P3P Sampling 
–based 
DLT 

Ceres 
Solver 

RANSAC 
PROSAC 
LO-
RANSAC 

Meshroom Incremental SIFT 
AKAZE 
CCTAG 

ANN 
Cascade 
Hashing 
Brute Force 
Vocabulary 
Tree 
 

P3P DLT Ceres 
Solver 

RANSAC 
ACRANSAC 
LO-
RANSAC 

 

Feature extraction 
The extraction and matching of proper features is crucial in any SfM pipeline. Most software 
packages currently employ Scale-Invariant Feature Transformation (SIFT) (Lowe, 2004) for 
their descriptor estimation. This descriptor has certainly proven its worth and is considered 
very robust and efficient in matching imagery even with limited overlap. For instance, 
COLMAP implements SIFT as does Alicevision Meshroom. Several alternatives are discussed 
in the literature in paragraph 3.2.1 such as SURF, SHOT, DAISY and so on. 3DF Zephyr 
Implements their own descriptor based on Difference of Gaussians (DoG).  Meshroom also 
provides libraries for CCtag and AKAZE descriptors. As expected with commercial software, 
there is limited information on the exact inner workings of the algorithms involved. Overall, 
numerous descriptors are capably of robustly encoding a set of input imagery. Therefore, in 
the V4Design project, we will use one of the existing descriptors and implement it into our 
own reconstruction pipeline. 
 
Feature Matching 

Closely aligned to the feature extraction is the matching of the feature vectors. This involves 
retrieving the correct correspondence for as many features as possible in an efficient 
manner. Not only does this include matching the proper descriptors but also selecting 
suitable image pairs to reduce the number of computations. However, the optimal selection 
method differs for varying image sequences. For instance, sequential methods implemented 
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by 3DF Zephyr and RealityCapture specifically target subsequent images such as the frames 
extracted from videos. This is very efficient since the number of matches to be evaluated is 
equal to the dimensionality of O(n) compared to brute force methods that only have a 
computational efficiency of O(n²). Aside from the obvious choice for video sequences, the 
V4Design project requires a more versatile image selection. This is especially true for the 
results from the crawling unit developed by CERTH. These images are typically randomly 
organized, have little overlap and suffer from poor image quality in terms of 
photogrammetric compatibility as they were often taken with a different purpose at a 
different time period. Numerous solutions have been presented in the literature to tackle 
these random datasets. Table 1 shows several implementations of popular methods. For 
instance, Meshroom and COLMAP also offer vocabulary Trees for efficient pair estimation. 
Once a set of images is determined, the sets of feature vectors are compared to determine a 
match. Similar to the image selection, the combination possibilities should be limited as 
much as possible. Typically, a variant of the RANSAC algorithm is used in order to deal with 
and eliminate erroneous matches and outliers. 
 

Alignment 
The alignment for images in an incremental SfM and a global SfM is different. The former 
starts with a two-pair reconstruction and iteratively extends the alignment. The latter 
considers the entire image batch for the bundle block adjustment and computes the exterior 
orientation of all images at once. Separate algorithms are developed for both approaches. 
Typically, incremental solutions employ P3P for aligning new images which is the case for 
Meshroom, COLMAP and 3DF Zephyr. Alternatively, 3DF Zephyr also implements the DLT 
algorithm for their global SfM pipeline. Both approaches typically perform an alignment 
optimization. Global SfM only optimizes once with the entire batch while incremental SfM 
iteratively computes smaller bundle adjustments. Both optimizations have the same 
mathematical representation and thus algorithms are shared across pipelines. A popular 
solver based on Levenberg-Marquardt is the Ceres Solver. A prominent factor in incremental 
SfM is the size of the bundle adjustment that is considered during each iteration. Early 
versions optimized for the entire aligned batch which leads to computational complexity of 
O(n!) which is suboptimal. Recent methods only consider a subset, significantly increasing 
the methods efficiency rendering it a viable option compared to global methods. However, 
sparse subsets lead to drift which reduces global accuracy. Therefore, incremental methods 
will often perform an intermediate global bundle adjustment if the cluster has sufficiently 
expanded as is the case in COLMAP. In V4Design, regular bundle adjustments are mandatory 
since overlap between the input imagery is low and the alignments often uncertain.  
 
Dense Reconstruction 
Once the images are aligned, photogrammetric pipelines produce depth maps and fuse them 
to compute dense point clouds. This is a memory intensive procedure that accounts for a 
significant portion of the total computation time. Global methods implemented in 
RealityCapture and 3DF Zephyr are faster overall but can struggle with larger datasets since 
the dense point cloud is simultaneously computed for all the depth maps. Therefore, the 
incremental methods embedded in MetaShape, COLMAP and Meshroom are preferred. 
Depth maps are computed and fused during each iteration of the process after the bundle 
adjustment. While the methods for computing depth maps and fusion are similar for the 
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evaluated software, their parameters and accessibility are not. The efficiency of dense point 
cloud generation is significantly influenced by the number of input images, the choice of 
filtering algorithms and whether or not the point cloud is kept in memory during subsequent 
iterations. It is important in the V4Design pipeline that these parameters can be accessed 
and dynamically set to suitable values to retrieve proper results from whatever images are 
crawled from the databases. 
 
Meshing 
After the computation of the dense point cloud, the resulting points are used to compute a 
mesh. Several triangulation and meshing methods are available in literature and the 
evaluated software. For instance, Meshroom and COLMAP respectively use the DLT and 
sampling-based DLT methods. Alternatively, 3DF Zephyr employs Linear LS which shows 
promising results. Similar to the dense reconstruction, the performance of these methods is 
significantly influenced by the size of the inputs. Also, subsampling drastically improves 
efficiency but reduces the accuracy. A vital aspect in the implementation of these methods is 
the availability of parallel processing and GPU integration. All commercial software are 
heavily optimized, resulting in fast reconstruction algorithms. The Open source software 
packages do this to a lesser extent but also target the efficiency of the methods themselves. 
Overall, it is stated that the V4Design pipeline requires both efficient methods and proper 
CPU and GPU integration which are suited to run on cloud services in order to retrieve the 
most optimal triangulation. 
 
Texturing 
A major advantage of photogrammetric methods is the possibility to compute high quality 
textures for the 3D models. This is possible because the 3D geometry is actually derived from 
the images, so the link between the geometry and the texture is readily available. The 
reprojection of the imagery onto the mesh to retrieve high quality textures is vital to the 
V4Design outputs. Aside from the high quality textures that are extracted from recent 
imagery, it should also be possible to replace the aesthetics with user defined textures. 
Furthermore, it is within the scope of “Reliving the past” to map textures from the past 
(PUC4). In order to do this, imagery from different time periods should be matched together. 
Given a set of properly aligned images, the reprojection of the pixel information to UV maps 
can be computed using the homography between the mesh and the initial image. This is a 
fairly standard procedure present in all software that is mainly driven by parameters such as 
the target texel size and the choice of images that are best suited for texturing. 
 
Overall, it is stated that the State-of-the-Art can be best extended by combining the best 
performing methods from the different software solutions. Each software package has its 
pros and cons in terms of functionality, efficiency and performance. However, it is 
challenging to theoretically determine which components are best suited to deal with the 
wide variety of imagery in the V4Design project. Therefore, practical tests are required to 
empirically determine the best suited methods. 

5.3 Experiments 

In this paragraph, the reconstruction pipeline of each software package is tested on its 
efficiency and quality. Also, the software’s ability to match images from different time 
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periods is taken into account. The intermediate results of each step of the reconstruction 
process are observed including the sparse reconstruction, the dense reconstruction and the 
final model creation along with the high quality textures. The evaluation itself is performed 
in two steps. First, an overall evaluation is performed of the intermediate outputs with 
respect to the processing time. Secondly, each step is investigated with more detail in terms 
of quality and accuracy. Several realistic test cases are presented in order to determine the 
best suited methods for the V4Design project. 

5.3.1 Datasets 

The datasets are selected in such a way that they represent the variety of input data in the 
V4Design project. Also, the image sequences pose significant challenges to photogrammetric 
process. More specifically, both imagery extracted from videos and unordered images are 
processed to evaluate the performance of the different algorithms. Four test cases are 
presented that vary in scale, detailing, image quality and capturing method. In the following 
paragraph, each data set is discussed in detail along with the difficulties it imposes for the 
3D reconstruction pipeline. 

Dataset 1: Schiller Monument 

The first data set is a video sequence of the Schiller Monument on the Gendarmenmarkt, 
Berlin (Figure 32). A 2 min video fragment was captured with an unknown device at 25fps on 
the 23th of May 2018 by a tourist visiting the square. The video shows the statue from 
different points of view as the tourist slowly walks around the statue. 464 frames were 
extracted from the video. Overall, this is a fairly good test as there inherently is significant 
overlap between the imagery. It is therefore expected that the alignment by the different 
software will yield proper results. However, the video is taken at pedestrian height and other 
tourists are walking in front of the target object causing occlusions. Also, the textures are 
suboptimal as the lighting conditions change as the tourist walk around the statue, there is 
little texture on the statue itself and there is a lot of shading. Furthermore, the degree of 
lens distortion will certainly affect the reconstruction accuracy.  
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Figure 32: Schiller Monument, Gendarmenmarkt, Berlin 
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Dataset 2: Technology campus Ghent 
The second data set is a video fragment of the Technology campus Ghent, Belgium (Figure 
33). It is a 8min drone flight at 59fps of the campus grounds captured with a DJI Phantom 
4Pro operated by a pilot in training on the 24th of December 2017. 475 frames were 
extracted from the video. Similar to the first test case, the overlap is inherently high. 
However, the flightpath is more arbitrary due to the pilot’s training exercise. Also, the flight 
was conducted when the campus was covered in snow, causing reflections and poor 
textures. Overall, it is expected that the reconstruction process will yield proper results of 
the grounds and the surrounding buildings.  

 

Figure 33: Dataset 2, Technology campus Ghent 

Dataset 3: Gendarmenmarkt 

The third dataset is a data dump from the crawling unit developed by CERTH. It contains 993 
images of the Gendarmenmarkt, Berlin. It is a representative case for the type of imagery 
the V4Design project is looking to use. However, there are significant challenges for the 3D 
reconstruction pipeline. First of all, the imagery originates from different sources, time 
periods and were captured both during the day and night (Figure 34). Numerous images are 
irrelevant, showing only fragments of the scene or simply pictures that were semantically 
linked to the Gendarmenmarkt. Most images are also artistic including special lighting 
effects and selfies. On top of that, the quality of the usable imagery is poor and heavily 
distorted. It is expected that the 3D reconstruction based on this imagery will be challenging 
if not impossible. However, it is vital to evaluate which software components are capable of 
dealing with this sort of data. 
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Figure 34: Dataset 3, image results of the crawling of the Gendarmenmarkt, Berlin. The 
bottom left image originates from 1955, the bottom centre image from 1988, and the 

bottom right image from 2005. 

Dataset 4: Brandenburger Gate 
 
The fourth dataset is another data dump from the crawling unit. It contains 991 arbitrary 
images of the Brandenburger Gate, Berlin (Figure 35). Similar to the Gendarmenmarkt, this 
monument has been thoroughly documented throughout history, resulting in a wide variety 
of images. The same challenges occur as most images are unsuited for photogrammetric 
purposes. However, there is a distinct difference between the image set of the 
Gendarmenmarkt and the Brandenburger Gate: at the market, the scene of interest lies at 
the edges of the market, and thus, most images are captured pointing outwards. This causes 
issues in the 3D reconstruction pipeline since a minimal baseline is required for multi-view 
reconstruction. With the Brandenburger Gate, the scene of interest lies at the center, and 
thus most images are captured pointing towards the center of the scene. This is a preferable 
photogrammetric setup and thus it is expected that despite the shortcomings of the 
imagery, the Brandenburger Gate will yield adequate results, provided that the images from 
different time periods can be matched. 
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Figure 35: Dataset 4, image results of the crawling of the Brandenburgate, Berlin. The 
bottom left image depicts an image at MiniEuropa, the bottom centre is an artistic image 

captured in the evening and the bottom right image dates from 1955. 
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5.3.2 Overall test results 

Table 4: Intermediate 3D Reconstruction results of the four test cases with their respective processing time 
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Schiller 
Monument 

464           

MetaShape 463 0.92 158 032 0:19:21 1 170 169 1:00:31 358 617 0:09:30 100% 0:00:48 1:30:10 

3DF Zephyr 464 0.42 54 914 1:07:00 3 912 433 0:46:00 678 891 0:15:00 100% 0:02:30 2:10:30 

RealityCapture 464 0.88 492 576 0:04:42 300 442 0:08:31 100% 0:02:02 0:15:15 

COLMAP 464 0.94 462 547 0:16:55 10 54 503 5:21:00 - - - - 5:37:55 

Meshroom 462 0.65 36 760 0:04:00 2 767 089 2:22:00 541 649 0:08:00 100% 0:01:00 2:35:00 

Technology 
Campus 

475           

MetaShape 352 1.07 37 191 0:31:47 1 846 373 1:00:36 804 639 0:12:35 73% 0:01:30 1:46:28 

3DF Zephyr 463 0.31 82 159 0:42:00 1 181 614 0:14:17 405 876 0:09:07 86% 0:03:58 1:09:22 

RealityCapture 474 0.66 351 585 0:06:48 1 642 194 0:15:29 75% 0:00:58 0:23:15 

COLMAP 475 0.61 112 502 0:09:25 2 870 517 1:53:01 - - - - 2:02:26 

Meshroom 464 0.51 56 406 0:21:00 3 265 817 0:49:40 2 024 618 0:08:40 79% 0:03:00 1:22:20 
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Table 5: Intermediate 3D Reconstruction results of the four test cases with their respective processing time. 
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Gendarmen-
markt 

993           

MetaShape 278 1344.42 23 952 4:48:50 - - -  - - - 4:48:50 

3DF Zephyr 283 1.22 16 816 0:33:11 948 963 0:21:55 1 351 715 0:28:06 81% 0:21:50 1:45:02 

RealityCapture 290 1.60 42 060 0:16:58 1 050 248 0:21:49 93% 0:13:14 0:52:01 

COLMAP 723 0.74 105 893 0:56:22 6 099 431 7:53:00 3 011 079 0:17:05 75% 0:25:59 9:32:26 

Meshroom - - - - - - - - - - - 

Brandenburger-
poort 

991          
 

MetaShape 42 1.38 939 0:20:45 - - - - - - 0:20:45 

3DF Zephyr 209 0.27 5 858 0:27:33 960 945 0:03:59 104 774 0:02:07 25% 0:0021 0:33:39 

RealityCapture 131 1.08 19 530 0:01:51 439 060 0:08:49 32% 0:00:52 0:11:32 

COLMAP 461 0.14 46 310 1:18:33 1 640 873 4:06:08 - - - - 5:24:41 

Meshroom 5 0.05 583 12.03.07 - - - - - - - 
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As an initial test, the entire 3D reconstruction process is conducted for every test case in 
every software package. The 5 packages processed the data and at every step, intermediate 
results were saved. As it is impossible to have a uniform set of parameters for the 
reconstruction process, each package processed the test cases several times until an optimal 
set of settings for that software was established. The parameters were chosen in such a way 
that for each test case the number of matched images, the dense point cloud, the mesh 
quality and texturing quality were maximized while the processing time was minimized.  

Table 4 depicts the results of the processing of the video sequences of the Gendarmenmarkt 
and the Campus in Ghent. Basic results are reported for each intermediate step such as the 
number of reconstruction points and the reprojection error along with the computation 
time. From these values, a superficial evaluation can be performed of each software’s 
efficiency which will then be later discussed in detail in paragraph 5.3.3 and 5.3.4. Overall, all 
software packages were capable of computing a proper reconstruction from the extracted 
keyframes.  This is expected since the GRIC detector ensures proper baselines between 
consecutive images while retaining sufficient overlap. This is reflected in the average 
reprojection errors of the tiepoints between the images, which is subpixel for both videos.  
However, not all software was capable of matching all images. For instance, MetaShape 
struggled with the vast number of pixels containing snow in Ghent, which are challenging to 
match. The processing time also differs between the different projects. RealityCapture 
outperforms the other software on both occasions in the sparse and dense matching. 
MetaShape, 3D Zephyr, COLMAP and Meshroom all take second place depending on the 
procedure. MetaShape has adequate sparse and dense matching but is not capable of 
matching a portion of the imagery. COLMAP scores average on the matching but gets 
outperformed in the dense reconstruction. Meshroom shows promising results in the dense 
matching but uses significantly less tiepoints for the sparse reconstruction, possibly 
introducing errors in the matching. 3D Zephyr also uses less tiepoints but has significantly 
higher processing times for the sparse reconstruction.  

Table 5 shows the results for the imagery batches crawled by CERTH of the 
Gendarmenmarkt and the Brandenburger Gate. Similar to Table 4, a superficial comparison 
can be made between the software in terms of processing speed with respect to the 
outputs. In contrast to the video processing, it is expected that severe problems will occur 
with the sparse and dense reconstruction. These test cases are very relevant since it can be 
observed how robust the different algorithms are to noise, artefacts, lighting variation, 
minimal overlap, defocus and other effects. Furthermore, the majority of the V4Design 
imagery will contain similar challenges. Table 5 shows that severe issues indeed surface for 
both test cases. MetaShape and Meshroom completely misalign the Gendarmenmarkt and 
only succeed in matching a small portion of the Brandenburger Gate. 3D Zephyr and 
RealityCapture do match about a third of the images but show increased reprojection errors.  
COLMAP is the undisputed victor in the sparse reconstruction, matching over double the 
number of images than other software while retaining proper reprojection errors. The 
algorithm’s ability to match these types of inputs in combination with its Open Source 
functions are interesting features to incorporate into the V4Design pipeline. However, 
COLMAP’s dense reconstruction is relatively slow in comparison to other software. Referring 
back to Table 5, it is observed that, despite the increased number of points being 
reconstructed, COLMAP’s dense reconstruction is outperformed by all other software. Since 
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the V4Design project aims to advance the State-of-the-Art through the use of Open Source 
algorithms, it is a promising proposal to combine COLMAP’s matching with other Open 
Source algorithms such as Meshroom. Table 5 shows that, given a set of aligned imagery, 
Meshroom’s dense matching and subsequent meshing shows promising results. 
RealityCapture does still outperform in both steps due to its innovative approach to combine 
the dense reconstruction and meshing in a single step, thus passing over the dense point 
cloud . However, we argue that  within the scope of the V4Design project, we want to retain 
access to the dense points cloud as UR_021 (D7.1,7.2) indicates architects want to edit and 
clean the dense point cloud. Together with the Open Source nature of Meshroom, it is 
proposed to adopt and extend algorithms from Meshroom for the dense reconstruction and 
meshing. 
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5.3.3 Comparison of the sparse reconstruction 

While the previous tests give a general overview of the efficiency of the different software packages, a more detailed study of the 
reconstruction performance is needed to constitute a proper reconstruction pipeline. In this section, the results of sparse reconstruction step 
are briefly discussed in terms of quality, noise and density.  

Table 6: Overview sparse reconstruction 
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Table 7: Overview sparse reconstruction 
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This paragraph contains the detailed study of the sparse reconstruction of the four test cases 
by the different software packages. A visual inspection is conducted of the camera 
alignment, the outliers of the tiepoint reconstruction and the overall quality and density of 
the models. Table 6 and Table 7 depict the reconstruction of the tiepoints in 3D. Similar to 
the results presented in the paragraph above, the videos show good results for all packages.  
For instance, the camera path can be clearly observed with the user circumventing the 
statue in the middle of the Gendarmenmarkt. COLMAP even registers images taken by the 
user stepping closer to the statue along the trajectory. However, there are differences in the 
quality of the reconstructed tie points. For instance, RealityCapture reconstructs tie points 
on the main body of the statue but not on the pedestal while this is the case with other 
algorithms. In contrast, there are limited outliers, which is not the case for other software. 
MetaShape and COLMAP still provide good quality results but Meshroom and 3D Zephyr 
clearly generate more noise. These outliers will have significant impact on the dense 
reconstruction and subsequent meshing since they are the basis for the depth map 
generation. Similar results are observed for the University campus in Ghent. RealityCapture 
and COLMAP provide low levels of noise while the other software packages do contain some 
outliers. MetaShape again struggles with the large amounts of snow in the imagery and 
produces more outliers, which is also reflected in the increased reprojection error (see Table 
6, Table 7).  

A significant difference is observed between the sparse reconstruction of the 
Gendarmenmarkt and the Brandenburger Gate. Not only do most packages fail to match the 
majority of the imagery, there are also alarming levels of noise present in the datasets. For 
instance, both 3D zephyr and Meshroom match less than a third of the imagery and produce 
so much noise that the structure is unrecognizable. RealityCapture provides better results 
but the asset is still covered in high levels of outliers that will obstruct the dense matching. 
The performance of COLMAP is again confirmed as it does not only match more images, but 
also produces acceptable levels of noise in challenging conditions.  
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5.3.4 Comparison of the dense reconstruction and meshing 

Similarly to the previous section, a brief overview of the results of the dense reconstruction and subsequent meshing is presented with regard 
to the quality, noise and density. The main focus is on the dense reconstruction since meshing is predominantly driven by the input point 
clouds. 

Table 8: Overview dense reconstruction 
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Table 9: Overview dense reconstruction 
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This paragraph contains the detailed study of the dense reconstruction of the four test cases 
by the different software packages. A visual inspection is conducted of the point cloud/mesh 
quality with respect to the sparse reconstruction. Table 8 and Table 9 depict the dense 
matching and/or subsequent meshing in 3D. As discussed in the superficial evaluation in 
paragraph 5.3.2, the results from the dense matching differ from the sparse reconstruction 
presented above. For instance, it is expected that RealityCapture outperforms the other 
software due to its innovative method that combines dense matching and meshing. Table 8 
shows that RealityCapture is indeed not only fast, but also provides excellent results in terms 
of the dense reconstruction. Especially for first two test cases, it is observed that, given 
proper sparse point clouds, the reconstruction is very clean. Similar results are observed for 
Meshroom and Metashape (for the statue) that produce clean 3D reconstruction even 
though they are less performant. 3D Zephyr and COLMAP produce significantly more noise 
despite their proper sparse reconstruction. 

For the last two test cases, the quality of the models is inadequate. As expected, the sparse 
point cloud drastically influences the dense reconstruction. The depth maps are prone to 
noise and so is the meshing. It is clear that no software can deal with overwhelming noise in 
the sparse point clouds. RealityCapture is even more affected by this since it does not 
produce a dense cloud which can be manually processed by the user. The result is that all 
models are heavily distorted except for COLMAP that had a better sparse reconstruction. 
However, Table 9 shows that COLMAP is significantly slower than the other packages given 
proper inputs. Furthermore, the dense matching of COLMAP is often prone to failure. It is 
therefore clear that the State-of-the-Art can be extended by merging COLMAP’s sparse 
reconstruction with Meshroom’s dense reconstruction and build our own functionalities on 
top of the Open Source code to constitute both a robust and performant reconstruction 
pipeline.  
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5.4 Architecture design 3D reconstruction Pipeline 

A detailed description of the architectural design of the reconstruction is provided in D6.4 
paragraph 3.1. Figure 36 shows the different executed steps throughout the pipeline 
according to this design. 

 

 
Figure 36: Overview of steps performed in the current iteration of the reconstruction 

service. 

Each of these steps are described below: 

1. Content preparation 

The service is informed of new data to process. Video data is downloaded from the central 
knowledge base and the processing environment is prepared on the network storage 
system. New data is managed in an sql-based database. 

2. Frame extraction 

A command is issued to the frame extraction service. The storage service provides the 
appropriate video data and handles the storage of the individual frames. Once all keyframes 
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are extracted a message is sent to “FRAMES_AVAILABLE” topic on the V4D message bus. This 
will cause the STBOL and texture proposal service to process the frames. 

3. Sparse, dense and textured mesh 

The reconstruction service requests the appropriate keyframes from the local network 
storage for a specific video. Sparse, Dense and texturing algorithms are executed and all 
results are once again managed by the storage system. 

A processing environment is prepared based on the extracted keyframes. Here Sparse, 
Dense and texturing algorithms are executed resulting in image alignment, pointcloud and 
mesh output respectively. All output data is managed by the local storage service. 

4. Metadata management and result publishing 

Once all necessary metadata has been received from other modules (Aesthetics, STBOL, TP) 
the resulting 3D reconstruction, including metadata, is published to the knowledge base and 
thus made available for subsequent processing or the user tool environments. Optionally 
additional texturing routines may be run based on TP results in order to restyle the mesh 
(Example shown in Figure 41). 

5.5 Implementation of SfM algorithms 

In the previous chapter the system was explained from an architectural standpoint (use of 
microservices and communication methods). This chapter clarifies the internal SfM 
algorithms across all these micro services. Figure 37 provides a clear view of all the 
necessary steps from images towards a textured mesh. For this we use a combination of 
Colmap- and AliceVision-based code. Optional steps are displayed in red. 

 

Figure 37: Steps performed in the current pipeline (After initial keyframe extraction). 
Optional (red) algorithms with data from other partners. 
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5.5.1 Keyframe extraction 

Paragraph 4 already discussed the developed algorithm in detail. The service has been 
implemented in C++ with help of the following libraries: 

 FFmpeg1 Video decoding 

OpenCV2 Linear algebra computation, Kanade-Lucas-Tomasi (KLT) feature 
tracking  

5.5.2 Sparse Reconstruction 

The calculation of camera alignment and sparse point cloud is based on our custom COLMAP 
implementation. This functionality is integrated inside the “Reconstruction Service” node as 
seen in Figure 36. C# was used for managing and initiating of the several subtasks as well as 
IO. C++ was used for high performance structure-from-motion code, this code is built as a 
set of command-line interface (CLI) programs. Following libraries were used (Excluding any 
non-SfM related libraries): 

Eigen33 Linear algebra operation  

COLMAP Incremental based sparse reconstruction 

5.5.3 Dense reconstruction 

The implementation of the dense reconstruction algorithms are performed very similarly to 
those of the sparse reconstruction. C# was also used in combination with C++ compiled CLI 
applications. These CLI applications are built using the Open Source AliceVision project, 
which has received funding from the European Union’s Horizon 2020 research and 
innovation progamme in the past4. Here, the Depth-map generation, surface reconstruction 
and texturing code has been reused. Additional filtering functionalities based on masks 
(STBOL) may be used as seen in Figure 37. Whereas the texturing would normally be 
executed on the original undistorted frames, this pipeline also accepts input from the 
texture proposal service developed in T4.2. 

5.5.4 Service output 

Once the pipeline has successfully finished, a result is pushed to both the V4D message bus 
and the knowledge base. The result is Json-formatted which contains  the following data (for 
the 1st prototype): Unique ID, visual analysis results, mesh information, point cloud 
information, data storage URLS, used raw data (ID’s from video & images) and a thumbnail. 

                                                      
1 https://ffmpeg.org/ 
2 https://opencv.org/ 
3 http://eigen.tuxfamily.org 

4 POPART (project ID 644874) and LADIO (project ID 731970) 

https://ffmpeg.org/
https://opencv.org/
http://eigen.tuxfamily.org/
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Figure 38: Example Json generated after the pipeline finishes. Pointcloud data is currently 
not used by the tools and thus not published to the storage service. 
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5.5.5 Pipeline experiments 

A total of 47 videos with a SIMMO ID are currently available in the V4D knowledge base. 
These videos are well annotated. The 3DR pipeline was initiated using a DATA_AVAILABLE 
message. Currently 24 sparse point clouds have been automatically extracted from these 
videos and a total of 14 textured models are automatically created. An initial, currently semi-
automatic, pipeline test for texture proposal was executed successfully and can be seen in 
Figure 41.  

A large set of AF video data yielded good results in spite of the poor video quality (640x480 
pixel, grainy due to low light conditions) and can be seen in Figure 39. However in a minority 
of the cases the meshing process, though executing successfully, was unable to fully 
reconstruct the objects (seen in Figure 39, 3rd and last mesh). 

For some videos, containing on-screen text or edited in another fashion, the automatic 
pipeline did not succeed. Figure 31 shows an example of a video found in the V4D 
knowledge base with on-screen text. This in particular causes bad image alignment due to a 
high amount of matched features in the textual areas. Tests showed that by removing these 
keyframes good reconstructions can be achieved. 

For the first prototype only consortium partner data with sufficient textual annotations has 
been imported into the knowledge base. Additional models were also retrieved from data 
not yet present in the V4D knowledge base. This includes models extracted from: crawling 
unit data, YouTube and non-annotated consortium partner data (Figure 40). 

 

 

Figure 39: Some results from AF data present in KB. Bottom right: failed bench meshing 

   

Figure 40: Reconstruction from AF data not yet present in the KB. 
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Figure 41: Reconstruction of DW’s data. 6 additional texture styles were computed based on 
texture proposal results. 

 

 

Figure 42: Left: Example ‘bad’ keyframe containing onscreen text and logos. Right: resulting 
3D, obtained by removing the bad keyframes. 
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5.5.6 Conclusions 

The modular architecture design allows for easy further development and addition of new 
algorithms in the upcoming 2nd prototype, such as improved mesh filtering, model 
segmentation and IFC object extraction.  

In this 1st prototype emphasis was put on the system architectural design. The modularity 
and backwards-compatible gRPC protocol eases further implementation of new algorithms 
currently being developed for the 2nd prototype (mask filtering, segmentation, IFC extraction 
or single view reconstruction). After a thorough study of current state-of-the-art commercial 
and non-commercial photogrammetry software, our SfM pipeline has combined the 
strengths of 2 major open source packages: Colmap and AliceVision. Research and 
development done in V4Design’s photogrammetry service builds on top of this software and 
thus contributes to these packages. A complete and automatic SfM pipeline has been 
implemented and tested on a variety of data. Tests for restyling a mesh based on texture 
proposal results were successful and this feature can be automized and added to the current 
automatic pipeline. 
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6 ENHANCED 3D MODEL EXTRACTION 

As stated in D3.2, Seven user requirements from D7.2 have been associated with the texture 
proposals module of V4Design, namely the UR_002, UR_003, UR_004, UR_011A, UR_013, 
UR_017 and UR_018. These include both high quality textures from reused imagery in the 
V4Design project and fictional textures that can be used for conceptual design. In this 
chapter, the implementation of texturing and masking results in the SfM pipeline are 
discussed along with experimental results.  

6.1 Input from STBOL and AE&TP algorithms 

The inner workings of the Spatio-Temporal Building and Object Localization and the 
Aesthetics Extraction algorithm are discussed in D3.2. The former classifies pixel information 
into object classes. From these classes, image masks are generated that are used to support 
the SfM pipeline. The latter is an architectural synthetic tool to support model texturing. The 
outputs of both algorithms are embedded in the reconstruction pipeline to enhance the 
results. In the following paragraphs, each of the inputs is discussed in detail. 

6.1.1 STBOL 

The Spatio-Temporal Building and Object Localization algorithm detects various types of 
objects in the input imagery. It consists of a pre-trained classification model based on the 
VGG16 model that interprets each pixel of a set of input imagery and defines its class based 
on a set of local and contextual features (see D4.2). As an output, binary masks are 
computed for each image that are used to segment the reconstruction results (Figure 43). In 
this chapter, the emphasis is on the integration of the building masks since the SfM pipeline 
predominantly focuses on the built assets. 

The output masks can serve various purposes. First, they can be used to speed up the 
reconstruction since only 3D data has to be computed on structures instead of the entire 
environment. Secondly, they can be used to enhance the sparse and dense reconstruction by 
filtering outliers in the point clouds. For instance, the removal of faraway points on moving 
clouds, humans and cars can aid in the production of proper point cloud data. This in turn 
results in significantly better meshes since less noise is present in the data set. Finally, the 
prior segmentation in the imagery facilitates the semantic enrichment since a prior 
classification is performed limiting the number of available classes to those present in 
building environments.  
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Figure 43: Masking results of the VGG16 CNN algorithm: (a) initial image, (b) building mask 
and (c) sky mask. 

6.1.2 AE&TP 

The aesthetics algorithm also builds upon the pre-trained VGG16 architecture and is fine-
tuned by learning the aesthetics parameters from the benchmark Places2 dataset as 
discussed in D3.2. Both the style, genre and artist characteristics are extracted per painting. 
These are merged with input imagery of the crawling to generate novel textures from 
existing data. For instance, Figure 44 depicts the texture style of Van Gogh extracted by the 
AE&TP algorithm superimposed on a crawled image of the Gendarmenmarkt.   
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Figure 44: Style transfer of the famous painting Cafe Terrace at Night of Vincent Van Gogh to 
an image of the Gendarmenmarkt. 

As stated in D3.2, the AE&TP results can be combined with the masks of STBOL to transfer 
the texture proposals to a specific part of an image or video.  An innovative application of 
the proposed algorithm is background to background and foreground to foreground transfer 
between art and real life inputs. For instance, Figure 45 shows the superimposition of the 
yellow and blue building texture style of Van Ghogh projected on the wall of the 
Konzerthaus at the Gendarmenmarkt. This targeted style transfer allows for a wide variety of 
styles to be combined for the different objects in the scene, offering numerous possibilities 
for conceptual design and game development. 

    

 

Figure 45:Targeted texture superimposition of the Van Gogh style (b) on the mask of the 
Konzerthaus (a) at the Gendarmenmarkt, resulting in an impressionistic digital 

representation of the asset (c). 

A third potential application of the AE&TP algorithm is the enhancement of the texture 
quality of the results of the Structure-from-Motion pipeline. Typically, photogrammetric 
texturing is performed with an equal input of all oriented imagery. While this the ideal 
setting for videos or image sequences that were captured at the same time, this proves 
subideal for the crawling outputs. After all, the emphasis of the crawling unit is to retrieve all 
the different imagery taken from the same asset. This includes pictures taken in various 
lighting conditions such as during festivals, different time periods and so on (Figure 46). As 
multiple states are useful to conceptual design, it is interesting to separately texture the final 
model using only the imagery of a specific style or period. As a result, users can have their 
assets textured according to their needs without the need to alter lighting conditions or 
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manually adjust textures, which requires expert knowledge concerning texture mapping in 
shaded conditions. 

 

Figure 46: Difference between images taken during different time periods, which results in 
subideal texturing of the SfM reconstruction. 

6.2 Segmentation of 3D models 

As previously discussed the resulting masks of the STBOL algorithm can be beneficial to the 
proper reconstruction of building geometry from crawled imagery. In this section, the first 
implementation of masked imagery is discussed along with the literature study, 
experimental results and future work. 

6.2.1 Masking in SfM 

SfM pipelines rely on significant image redundancy in order to create photorealistic models 
of objects of interest. The State-of-the-Art and the presented experimental results show that 
scenes can be reliably reconstructed under the assumption of shape constancy and 
appearance congruency, commonly associated with static structures. However, as shown in 
Figure 47 the crawled imagery and videos are littered with what is referred to as dynamic 
objects due to visual motion. 3 types of visual motion are defined in the literature (Nelson 
and Polana, 1992).  
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Figure 47: Crawled imagery and videos are littered with dynamic objects. 

 Activities:  These are moving objects such as cars or humans, which have motion 
patterns that are periodic in time. These mainly cause artefacts in sequential imagery 
and frames extracted from videos, distorting both the 3D reconstruction and the 
subsequent texturing. In the crawled imagery, activities are considered motion 
events since the occurrences typically are observed only in a single image and are not 
predictable. 

 Motion Events: non-periodic events like the opening of a door, which lack spatial 
periodicity. The impact of these events is similar to that of the activities. Video 
frames will have their 3D reconstruction and texturing distorted. The crawled 
imagery will show only artefacts in the texture as it is unlikely that the event occurs 
in multiple crawled images. 

 Dynamic textures: these occurrences exhibit statistical regularity but have uncertain 
spatial and temporal extent such as rain, shadow, and smoke. These do not affect the 
reconstruction but have drastic effects on the texture quality of the model. 

It is vital that these occurrences are detected and taken into consideration for the 3D 
reconstruction and the subsequent texturing. Both aspects are treated separately in the 
literature. The enhancement of 3D reconstruction by masking is considered an instance of 
motion detection (Jodoin et al., 2014). The simplest of options is masking non-buildings of 
the images before starting the SfM pipeline. However, by removing a portion of the scene, 
the number and distribution of tiepoints is reduced, possible resulting is a less accurate 
reconstruction.  As discussed in paragraph 4, a reduction in tie-points leads to an increase in 



D4.3 – V1.5  

 

Page 74 

errors. Alternatively, the exterior camera parameter estimation is performed on the full 
images while the dense point cloud is constructed using the masked images. This is a 
promising approach which is also proposed in the V4Design pipeline. A potential drawback is 
the lack of 3D interpretation of motion events, which in this method solely relies on the 2D 
masks. An alternative approach is to use the masks during the iterations of an incremental 
reconstruction procedure. One method is to filter the outputs based on a shape-from-
silhouette procedure presented by Schmid et al. (Schmid2014). They perform a coarse 
identification of the dynamic scene elements and use this information to perform a 
foreground-background segmentation similar to the masks computed by STBOL. An essential 
part of their work is the iterative process of projecting dynamic occurrences back onto the 
input imagery to confirm their results. Post-reconstruction filters are also considered such as 
raytracing the masks to segment the dense reconstruction of the full images (Rashad et al., 
2017). However, it is computationally more efficient to incorporate the masks earlier in the 
workflow.  

6.2.2 Methodology 

In this section, the exploitation of mask extracted by STBOL is presented. As discussed in 
Section 4 and D4.2, keyframes are forwarded to STBOL. In parallel, the sparse reconstruction 
is computed for all inputs. Once the images are aligned, the imagery is replaced with 
segmented/masked imagery to generate the depth maps. Currently, only building masks are 
retained as defined by the user requirements. The different step of the masking are 
discussed in detail in the paragraphs below (Figure 48). 

 

 

Figure 48: Dense reconstruction procedure, based on presegmented imagery. 

 

 

Figure 49 Left: received Json data from STBOL. Right: resulting mask 
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The automation of the STBOL masks and its integration in the 3D reconstruction pipeline is 
currently being implemented. 

6.2.3 Experiments 

The Gendarmenmarkt is used several times as a demonstrator throughout the project. For 
the prototype of the enhanced model extraction, a video sequence is tested, created by a 
photographer walking over the square filming the Konzerthaus and the French Cathedral, 
cluttered with tourists and other artefacts (Figure 50). It is an ideal dataset for 3D 
reconstruction due to the camera movement and motion detection is paramount since the 
artefacts are located directly in front of the buildings and thus would cause problems in the 
reconstruction and subsequent texturing of the site. During the preprocessing, 1057 
keyframes are extracted from the video using the GRIC algorithm presented in paragraph 4. 
The resulting images are segmented by the STBOL algorithm (Figure 51) into different 
classes. Following, the output classes are used to mask all non-building classes in the 
imagery (Figure 52).  Given the exterior camera orientation of the sparse reconstruction and 
the masks, a set of depth maps are produced depicting the building geometry (Figure 52). 
Finally, a reduced dense point is computed. The result is a reduced dataset which better 
corresponds to the asset the user wants to reconstruct if requested (Figure 53) 

 

Figure 50: Overview Image Sequence Gendarmenmarkt from extracted keyframes 
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Figure 51: Overview Spatio-Temporal Building and Object Localization (STBOL) results 
identifying persons, sky and other non-building object types. 

 

Figure 52: Overview image masks removing all non-building entities from the imagery. 

 



D4.3 – V1.5  

 

Page 77 

 

Figure 53: Depth Map Generation from masked imagery.  

 

 

 

 

 

 

Figure 54: Overview resulting data reduction of the final reconstruction compared to the 
initial SfM pipeline. 

For the sake of the experiment, the building point clouds are compared to the initial 
reconstruction. Table 10 shows the difference in computation time between both models. It 
can be clearly observed that a significant time reduction can be achieved through 
segmentation. Furthermore, some imagery does not contain any building geometry and thus 
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can be ignored during the dense reconstruction. Overall, no less than 29% of the scene could 
be removed based on the STBOL detection. Not only does this improve the data efficiency, it 
also supports further segmentation into separate buildings since a significant portion of the 
noise and clutter is removed from the point clouds. 

Table 10: Overview comparison between initial reconstruction and segmented building point 
clouds 

Dataset Images STBOL 
Buildings 

Initial 
point 
cloud  

Time 
[s] 

Targeted 
Building 
Reconstruction 
point cloud 

Time 
[s] 

%Scene 
reconstruction 

Gendarmenmarkt 1057 957 667 
345 

0:15:35 405 326 0:05:12 29% 

6.2.4 Future work enhanced model extraction 

The current segmentation targets building geometry driven by an image based 
interpretation framework. It is important to notice that the buildings class is an archetype 
and thus there is no differentiation between a specific building and the structure next to it. 
As a result, a user initiating a reconstruction based on imagery of the Gendarmenmarkt or 
even the Konzerthaus will be delivered a model that contains the target structure and all the 
building geometry surrounding it that happens to occur in the crawled imagery. A valuable 
extension is to further extend the segmentation based on the keywords entered by the user. 
For instance, the keyword Konzerthaus should only provide 3D results for the structure itself 
opposed to the entire site. To enable this segmentation, Geospatial databases may be 
employed. Given  
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Figure 55: Overview future work enhanced model extraction through the use of Geospatial 
databases. 

the geolocated position of the target asset, a spatial segmentation can be performed in 
addition to the building detection by STBOL. This is under the assumption that the crawled 
footage can be spatially linked to existing geolocated resources (Figure 55). If this is the case, 
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the building footprint or the bounding box can be used to isolate only those building points 
that are part of the intended structure. Alternatively, Semantic Web technologies can be 
used to the same effect. Given geolocation triples on dbpedia or other resources, similar 
spatial search queries can be initiated to segment the data. However, licensing permissions 
are mandatory in order to use online geospatial repositories. WP9 focusses on licensing and 
IP that will enable this extension. 

6.3 Texture enhancement  

The proper retrieval of color information for the final mesh is considered an instance of 
texture optimization. Initially, texture was retrieved using vertex rendering methods. 
However, current methods nearly all rely on reprojecting images. Typically, all imagery is 
considered for the texturing but as stated above, this is subideal for crawled imagery. As a 
solution, weighted texturing is proposed (Baumberg, 2002). This is not applicable to the 
V4Design data unless the weights of some textures are considered 0, and also this method is 
prone to texture inconsistencies (Zhang, 2017). As a solution, priority imagery is proposed to 
incrementally texture portions of the mesh taking into consideration the visibility conditions 
between the images and the 3D surface model. As a criterion, the highest image quality in 
terms of Ground Sampling Distance is proposed.  

𝐺𝑆𝐷 =
𝐷 ∗ 𝐶𝐶𝐷𝑖,𝑗

𝑓 ∗ 𝑟𝑒𝑠𝑖,𝑗
 

Where D is the distance to the objects of interest, 𝐶𝐶𝐷𝑖,𝑗the sensor width [mm] along the 

width or height of the sensor, f the focal length [mm] and 𝑟𝑒𝑠𝑖,𝑗the number of pixels along 

the width or height of the image. Iwaszcuk et al. (Iwaszczuk, 2015) extend this with 
completeness of the texture, projection accuracy, viewing angle, and geometric resolution. 
This operation requires the processing of the candidate images to produce uniform 
brightness, contrast and saturation and to select the portions of the partial UV map 
corresponding to the central portion of the respective image to reduce the influence of the 
residual radial distortion (Caroti, 2015). One drawback of these blending approaches is their 
sensitivity to ghosting and blurring artefacts when textures are misaligned (Figure 56). 
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Figure 56: Example of misaligned textures resulting in a blurry texturing of the mesh object 
(Gal et al., 2010) 

To overcome the artifacts introduced by per-triangle texturing, Lempitsky et al. (Lempitsky, 
2007) consider the paradigm as a global optimization problem that can be solved with 
Markov Random Fields. Each surface triangle is projected back onto the images from which it 
is visible. A minimum set of image is sought that minimizes image blur across triangles. Gal 
et al. (Gal, 2010) further extend this by compensating for calibration and reconstruction 
errors, showing promising results.  

6.3.1 Methodology 

In this section, the implementation of the texturing is discussed. In the prototype SfM 
pipeline, the Open-source texture functions of Meshroom are used as implemented by Levy 
et al. (Levy et al., 2002). The Least Squares Conformal Maps for Automatic Texture Atlas 
Generation including the segmentation, parameterization and image projection are 
discussed below.  

Chart Segmentation 

The first step in segmentation is to divide the mesh into a set of homeomorphic parts, 
referred to as charts. The combination of texture charts is referred to as the texture atlas, 
which can be stored in well-known file formats such as .jpg or .png. The size of each chart is 
either user driven or dependent on the average texel size of the textured model. The latter is 
preferred since the texturing can then be formulated as a function of the input image 
resolution and the triangle size.  

𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑢𝑛𝑖𝑡

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑢𝑛𝑖𝑡
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An advantage of this method is its invariance to scale, which is crucial in the V4Design 
pipeline, as predominantly unscaled models will be produced. Also, it automatically takes 
the distance from the camera to the model into consideration since the average texel size is 
used. Given a user defined quality setting for the model, the total size of texture space is 
computed. This feature space is evenly distributed into 2048, 4096 or 8192 texture files to 
form the texture atlas.  

Chart Parameterization 

Each chart is unfolded with respect to its subset in the mesh. Meshroom employs conformal 
maps where the tangent vectors to the iso-u and to the iso-v curves are orthogonal and have 
the same length (Figure 57). 

 

Figure 57: Conformal map relation to mesh surface as described by Levy et al. (Levy et al., 
2002) 

The mapping of the triangles to the conformal map is performed using a least squares 
optimization problem. A subsegmentation is performed that clusters triangles onto a portion 
of the chart to ensure that neighbouring triangles are textured using the same image. This 
significantly reduces artefacts in the final texturing and improves the computational 
efficiency of the image selection.  

Image reprojection 

Once a set of uv maps is constructed representing the mesh surface, the imagery is 
reprojected to texture each triangle. As discussed above, the best fit imagery is chosen for 
each triangle. Meshroom filters the cameras without a good angle to the surface to favor 
front-to-parallel cameras and finally averages the pixel values (Figure 57). A maximum of 3 
images are considered for every triangle. The final texturing is computed by minimizing the 
error for the angle θ to the object, the distance D to the object and the offset from the 
camera center to the projected pixel. 
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Figure 58: Image reprojection parameters for best fit texturing. 

6.3.2 Texture Experiment 

Two experiments are conducted for the texturing of the 3D reconstruction. The first test is a 
video sequence taken by a drone and the second is the crawling data dump which is also 
discussed in section 5.3. Both tests are discussed below. 

Drone footage Bauhaus universität 

The drone footage originates from a drone recon flight conducted in September 2017. It is a 
round flight of the Bauhaus in broad daylight. It is expected that proper texturing results are 
achieved for this data set due to the ideal circumstances. 103 frames are extracted using the 
GRIC algorithm after which the sparse reconstruction was performed in COLMAP and the 
dense reconstruction computed in Meshroom. The texturing was performed with the 
Meshroom Least Squares Conformal Maps for Automatic Texture Atlas Generation. A texture 
quality of 100% was selected for the colorization of the mesh. 

Figure 59 shows one frame of the flight, along with the texture quality of the 3D 
reconstruction. It can be observed that the texture quality nearly equals the initial imagery. 
Upon more detailed inspection, there are some blending errors and artefacts but these are 
very limited. This is due to the consistent range at with the footage was acquired, the highly 
accurate exterior orientation and the uniform lighting in the imagery. It is stated that no 
texturing problems occur for these types of inputs. 
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Figure 59: Texturing results Bauhaus universität: (top) image from drone, (left) zoom in of 
same image, (bottom) textured mesh and (right) call out of textured mesh 
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Crawled imagery Gendarmenmarkt, Berlin 

The second experiment investigates the ability of Meshroom to texture imagery from 
different repositories. The same image crawling batch is used as discussed in paragraph 5.3. 
Figure 60 and Figure 61 depict the wide variety of textures that occur in the data set. The 
colors range from near white all the way to near black.  

 

 

Figure 60: Gendarmenmarkt image batch including images under varying lighting conditions: 
(left) normal daytime lighting and (right) dark evening light. 

Figure 62 shows the resulting textured mesh of the structure. While the geometry of the 
structure is properly reconstructed, the texture is not. Some of the brick texture can still be 
distinguished but it is clearly observed that the texture has become a blur of the different 
image textures. Different shades coexist in the texture ranging from dark grey from the 
imagery taken at night to a near white texture during the day. This is expected due to the 
high texture variance of the inputs. Overall, it is stated that the texture quality is inconsistent 
in color and blurry. Texture enhancements are in order to improve the results. 
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Figure 61: Gendarmenmarkt image batch including images under varying lighting conditions: 
(left) warm evening light and (right) cold daytime. 

 

Figure 62: Resulting texture using all aligned input imagery showing blurred colours.  
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6.3.3 Future Work texturing 

The above presented method succeeds in compensating stitching errors between similarly 
textured images. However, the main issue with crawled imagery is that some textures 
cannot coexist. Depending on the acquisition conditions and the time period, subsets of the 
input data are not supposed to contribute to a single texturing of the model. There are 
several opportunities to deal with this problem. We propose the use of subsets of texture 
styles in the V4Design project, which can be used to create different models. This would 
comprise of an initial best fit texturing for the asset. Subsequently, the texture could be 
replaced by the different texture styles. As it is likely for texture subsets to lack sufficient 
imagery to texture the entire asset, the style can be detected and superimposed on the 
initial texturing to fill the gaps. The style can also originate from fictional inputs such as 
paintings. As a result, different model textures are computed for the mesh model.  

The AE&TP (D3.2) algorithm can be extended to interpret the building textures and segment 
them into preset styles. As input, the full images should be used since the surroundings of a 
building give distinct cues about the style of the representation. For instance, the sky is a 
vital clue for the identification of day or night imagery. Following textures could be 
identified. 

 Realistic daytime: The most used texture for building models is realistic daytime. This 
implies imagery taken during the day with sufficient quality and resolution. It serves 
as the basis best fit texture that can also be used for the texture weight factoring.  

 Evening: A common class is imagery taken during the evening or nighttime. It is a 
valuable representation since game developers and Architects are interested in the 
unique lighting conditions of an asset during the night.  

 Historic: Historic images differentiate from other imagery as they often do not 
contain color or depict the buildings without the pathologies that are commonplace 
for historic buildings. This is especially interesting for game development that often 
focuses on scenery from the past. 

 Special: In addition to evening and daytime pictures, the image batch also contains 
special texturing such as images taken during a light festival and so on. These 
textures are fairly unique and thus hard to imitate. However, they need to be 
segregated since otherwise they would have a significant impact on the final texture 
mosaic. 

 Painting styles: In addition to the styles extracted from the input imagery, the 
database is further expanded with fictional styles derived from paintings or other 
inputs. Concretely in the V4Design project, painter styles are learned from their 
respective works to publish creative content for the users.  

The subsets are prone to leaving gaps in the texturing since the images batches aren’t 
sufficiently large or do not cover the entire asset. As a solution, we propose the 
superimposition of the texture styles onto the initial texture. Similar to the painting styles, 
the categories of night imagery and historic imagery can be extracted from the subset of 
images. The initial best fit textures could be altered in such a way that they resemble the 
texture of the subset. However, they would be given a low weight so they can only be used 
to texture the gaps of the model.  
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7 CONCLUSION  & FUTURE WORK 

7.1 Conclusions 

In this first iteration of the automated 3D reconstruction pipeline, we thoroughly assessed 
the State-of-the-Art of Structure-from-Motion methods for their ability to process video 
sequences and crawled image data sets and produce textured 3D mesh models. From the 
experiments, it was derived that the most promising method is to combine and extend 
existing algorithms. More specifically, COLMAP was implemented for the sparse 
reconstruction and Meshroom for the dense reconstruction. The algorithms from both 
softwares were integrated and automatically process any image batch when called upon by 
the message bus developed in WP7. Our method outperforms the individual State-of-the-Art 
approaches in terms of effectiveness and efficiency. This is especially true for the crawled 
imagery from varying sources with different lighting conditions, quality and from different 
time periods that severely obstruct conventional SfM pipelines. 

There are several key contributions in the proposed 3D reconstruction pipeline. For the 
video processing, we extract keyframes through shot detection and GRIC baseline detection. 
We also asses the shots to dispatch degenerate parts and evaluate the blurriness of the 
resulting keyframes. In the image preprocessing, the STBOL outputs (D3.2) are used to 
compute masks to enhance the model extraction. More specifically, the method is made 
computationally more efficient by using the full images for the sparse reconstruction and the 
masked imagery for the dense reconstruction. The resulting reconstructions only depict 
objects from a single STBOL class i.e. buildings which is both faster and cleaner than the 
current reconstructions. The subsequent algorithms are governed by independent 
communication modules run on KUL servers that relay their respective process metadata 
through the message bus and thus allow swift and flexible processing. Furthermore, the 
communication modules are developed in such a way that we are able to batch process 
input messages and populate the knowledge base. A final contribution in the first iteration is 
the texture enhancement of the 3D models. The outputs of the AE&TP algorithm developed 
in D3.2 are used in combination with the native Meshroom texture functions to compute 
multiple textures for the same 3D models. The resulting high quality textures from reused 
imagery and fictional textures can be used for conceptual design as specified by the user 
requirements. 

7.2 Future Work 

There are several opportunities to upgrade the SfM pipeline in the operational prototype by 
M28. First of all, we plan on expanding the input filtering, as it is vital to the success of the 
method. It is worthwhile to notice that the Gendarmenmarkt and the BrandenBurger Gate, 
despite the large number of irrelevant images, are well documented assets for which 
numerous proper images exists. However, this is unlikely the case for many other key-word 
based crawlings. One suggestion is to develop a prior SfM evaluation tool that provides 
feedback to the user on the feasibility of the reconstruction given the initial results of the 
crawling. This proposition is based on the fact that the user is probably unfamiliar with which 
imagery is suitable for 3D reconstruction and thus is prone to engage the crawling with 
inconvenient key-words. It is therefore better to warn the user about the expected results 
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rather than disappointing an unexperienced user after the several hours SfM process fails to 
provide 3D results. Similarly, we are currently investigating the opportunities to enable 
process feedback during the reconstruction. More specifically, we are working on an online 
sparse and dense point cloud preview so users can evaluate their intermediate results. 
Another upgrade is the extension of the COLMAP image matching procedure that currently 
considers all inputs to be unordered data sets. However, some imagery contains EXIF data 
with location information that can be used to enhance the image matching. Furthermore, 
the location information allows the scaling of the 3D models that are currently 
predominantly unscaled. Single view reconstruction is also being considered since the scope 
of V4Design extends towards the processing of imagery of artwork e.g. pottery which is 
often documented with a single image. 

For the enhanced model extraction, the following opportunities are under investigation. The 
segmentation can be significantly enhanced by integrating location information in the 
process either through Linked Data Resources or the Geolocation of the imagery. Also, 
several texture implementations are proposed to enhance texturing results and allow users 
to choose the best suited texture for their applications. 
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