V4Design

Visual and textual content re-purposing FOR(4) architecture, Design and virtual
reality games

H2020-779962

D2.2

Domain specific search and social media
crawling tools

Dissemination level: | Public

Contractual date of delivery: | Month 18, 30/06/2019

Actual date of delivery: | Month 18, 30/06/2019

Workpackage: | WP2 Multimedia Data Crawling for Reuse and
Repurpose

Task: | T2.1 Web crawling and retrieval of textual and
multimedia data

Type: | Report

Approval Status: | Approved

Version: | 1.1

Number of pages: | 54

Filename: | d2.2_v4design_Domain specific search and social media
crawling tools_v1.1.pdf

Abstract

This deliverable will describe the creation of the multimedia and textual datasets based on
Web and social media crawling, as well as for the collection of art-related and architecture-
related content.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information

Page 1

at its sole risk and liability.

co-funded by the European Union

Page 2

4D D2.2-V1.1

History

Version Date Reason Revised by

0.1 08/04/2019 Table of content created & content | CERTH
defined

0.2 15/05/2019 Initial Content added CERTH

0.3 24/06/2019 Content refinement, Abstract, Executive | CERTH
Summary and Conclusions added

1.0 26/06/2019 Content added by content providers DW, EF

1.1 28/06/2019 Address comments after internal review | CERTH
prepare deliverable for submission

d

Organization | Name Contact Information

CERTH Konstantinos Avgerinakis koafgeri@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

CERTH Vivi Ntrigkogia vividrig@iti.gr

DW Eva Lopez eva.lopez@dw.com

DW Stepahn Gensch stephan.gensch@dw.com

EF Hugo Manguinhas hugo.manguinhas@europeana.eu

EF Nienke van Schaverbeke nienke.vanschaverbeke@europeana.eu

EF Liam Wyatt liam.wyatt@europeana.eu

Page 3

4D D2.2-V1.1

Executive Summary

The proliferation of information and the profusion of noise demand for intelligent crawling
algorithms and implementations. In V4Design we develop a crawler that utilizes filters to
collect only useful subsets of interest of the relevant information. This deliverable describes
the creation of the multimedia and textual datasets based on Web and social media
crawling, as well as for the collection of art-related and architecture related content. For
each module an overview of related work and a comparison to other approaches is included
as well as a description of the implementation.

Specifically the following modules are presented: a) the web crawling module, b) the content
scraping module, c) the query expansion module, d) the web & social media search module.
In addition, the current deliverable documents the SIMMO data model and its adaptations as
well as the datasets created using the V4Design Crawler application. The collected resources
address the data collection needs defined from the start of the project until this reporting
period (M1-M18).

The rest of this report as organized as follows. After a short introduction, we start in Section
2 with a summary of the requirements from the crawler as were defined in deliverable D7.1.
Initial use case scenarios and user requirements” of WP7 followed by a description of the
framework in Section 3. Then, in Section 4 we describe the focused crawler for web data and
in Section 5, we present the entire web and social media searching tools that were
developed for various platforms that contain heterogeneous content and provide different
ways to access their data. Web searching tools also describe the APIs that the Deutsche
Welle and Europeana content providers distribute for accessing their data, along with a
dataset Europeana created early in the project using its API. Section 6 describes the query
expansion methodologies that we leverage to optimize the results and improve retrieval
performance. Section 7 analyses the SIMMO data model and adaptations to it. Then in
Section 8 we give an overview of the datasets created from web resources (through
crawling), namely Wikipedia, Deutsche Welle "Nico’s Weg" language course exercises,
Twitter and Flickr. In Section 9 we show the demonstrator and we finish in Section 10 with a
summary and conclusions.

Page 4

4D

D2.2-V1.1

Abbreviations and Acronyms

ASR Automatic Speech Recognition

API Application Programming Interface

CHO Cultural Heritage Object

EDM Europeana Data Model

EXIF Exchangeable Image File

FTP File Transfer Protocol

HTML HyperText Markup Language

JSON JavaScript Object Notation

NLTK Natural Language Toolkit

OCR Optical Character Recognition

PDF Portable Document Format

PUC Pilot Use Case

SIMMO Socially interconnected/interlinked and multimedia-enriched objects
STBOL Spatio-Temporal Building and Object Localization
ul User Interface

URL Uniform Resource Locator

VR Virtual Reality

XML eXtensible Markup Language

Page 5

4D D2.2-V1.1

Table of Contents

1 INTRODUCTION.....cciiitittunniiiiiinennesssstimenssssssssirsssssssssssssssssssssssssssssssssssssssnssssssssssnnnsssss 8
2 RELATION TO USER REQUIREMENTS......cccittimmmmnniiniimmnnnnssisnimmnnsssssssnmensssssssssssssssssssns 10
3 FRAMEWORKciiiiiineiiiiiiienneiiiiiieessesisiiiesssssssisiimessssssssssssssssssssssssssssssssssssssnssssssss 13
4 WEB CRAWLING & SCRAPING.......cceuueeiiiiirmmnnsisiinnennssssssnmemssssssssmsssnsssssssssesssssssssssens 15
4.1 00 1Y T T N 15

g Ot R 2 0= 1= Yo Y VoY U UPRPPRRNS 16

4.1.2 Approach and implementation ... e e e 17
4.2 R Yol o T o - N 18

oyt R 2 U= 1= Yo IV VoY U UEPUPPRNS 18

4.2.2 Approach and implementation ... e 20
5 WEB & SOCIAL MEDIA SEARCHccitttuuiiiiiiiinnneiiiniinenssssiisiiiensssssssssmsenssssssssnssssssssssns 21
5.1] [Tol T SRR 21
5.2 S€ArCh ENGINESciiiiieeeiiiiiiiiininiiiiiiiieiuiiniineesssissiineessssssssimessssssssssssssssssssssssesnnnss 22

LT N C o Yo = [T UU 23

5.2.2 DUCKDUCKGO ...eeiiiieeee ettt e e e e ettt e e e e e e e e e ettt a e e e eaeeeeessaasstaaaaeaaaaeeseesssnstaarasaeaans 23
5.3 Data from content Providerscccccceiiiiremeiiiiiiiinnniiiiiiie. 24

L0 70 A B A AN] PP PPPPUPRRRPPIN 24

L T8 A =t e A\ o DO PP PPPPUPRORPPON 30
5.4 L7 1= 35
6 QUERY EXPANSIONccciiiiiimnnniiiiiinnennsieniiimensssssssimmessssssssssssssssssssssnssnssssssssssssnssssssss 36
6.1 Neural Word Embeddings.........ceeuiiiiiiiienniiiiiiinnnniiiiiinsm. 37
6.2 L30T o111 0 T=T 0 = 4 o T o N 38
72N 71 N I N 1Y 0. 0 = 41
7.1 The SIMMO data model.........cccoiiiiiimiiiiiiiiiiiiiirressssssnsessssssenns 41
7.2 Adaplations......ccciiiiiriuiiiiiiiiiiiiiiiii st s e s e s sa s s st s e sansssssssssannnnns 43
8 DATASETS CREATEDcoitteuuuniiiiiiinnnniiiniinnenssssiiimesssssssssimessssssssssssssnsssssssssssssssssssssens 46
8.1 Wikipedia datasetccccciiiiiieuiiiiiiiiniiiiiiiiiiinessnrrsssssssnnsessssssssssesnnens 46

4D D2.2-V1.1

8.2 Deutsche Welle Nico’s Weg exercises dataset......c..ccccurrrrrneniiiiiiinnnniiiinnnennniinnnne. 46
8.3 Twitter dataset.......ceeueeeuuuuiiiiiiiiiiiiiiii e 47
8.4 Flickr dataset......cccoiiiiiiiiiiiiiiiieiiii e 48
9 DEMONSTRATOR ...oceiiieiiiitiiiriiiriireeit e sses s rsassreesersessrsassraessnassssnesssnsssensssennes 50
10 CONCLUSIONS AND NEXT STEPS.....c..cieuiiimiiiiiiiiiiiiiiiiiinineesireesrnessnessenssnsassnsesnees 52
REFERENCEScuuiiiiiiiiiiiiiiiieiiriiireitrei et reessreessrsesssaessrnssssassssnssrenssrsessnnssssnessensssnnnas 53

Page 7

4D D2.2-V1.1

1 INTRODUCTION

The prodigious amount of data, structured and unstructured, that individuals, businesses
and governments continue to generate at an unprecedented rate and the usability problems
that result from attempting to store and manage that data are rendering analysis and
indexing of data coming from social networking sites and websites a very challenging task.
The proliferation of information and the profusion of noise demand for intelligent crawling
algorithms and implementations. With ever expanding data divided in different formats,
multiple codes and languages and various categories, interconnected in no particular order,
an intelligent web crawler tailored to project and user requirements is necessary to tackle
the afore mentioned challenges.

To address this issue, in V4Design we develop a crawler that utilizes filters to collect only
subsets of interest of the relevant information. Such filters are related to specific multimedia
items i.e. images of buildings or artworks or topics identified in the context of WP4. Figure 1
depicts the V4Design architecture. This document pertains to the red part the data collection
of visual and technical data for reuse.

REUSE: VISUAL & TEXTUAL REPURPOSE: VISUAL, TEXTUAL & SEMANTICS ANALYSIS
DATA COLLECTION
1 1l i
F 1r 1

Movies

Q 3D-RECONSTRUCTION OF | CONTENT EXTRACTION FROM SEMANTIC CONTENT
BUILDINGS & VISUAL ANALYSIS| TEXTUAL & VISUAL DATA REPRESENTATION,
INTEGRATION & REASONING

L 'grg‘d%c:!'\f;:';:a'zer?o"'es Extracting content Semantic content
— - from textual data representation
3D-reconstruction in movies
I e T e Aesthetic concept extraction Semantic integration
N ﬁ 3D-model enrichment by BIM
from visual content i
3,/ @ e TGIS T s Visu, and reasoning

Social Media

Documentaries

DATA
INFORMATION

SUMMARY AND TEXT
GENERATION
COMBINING GEOMETRIC,
SEMANTIC & TEXTUAL

-
<
=
B
>
w
(=
3
=
x
>
o
>

{

Text

Figure 1: WP2 in V4Design architecture

Three sources of data are crawled to collect, reuse and repurpose content in V4Design:
status updates from social media and web pages, movie and documentary data collections
from the content providers of the project and artwork data collection from the Europeana
Foundation repository. In Section 3, we demonstrate an architecture that crawls both types
of sources and puts all data into a unified store (the SIMMO DB) for further processing.

The V4Design Web and Social Media Crawling tool extracts freely available textual and visual
artwork content from open web resources. The tool is based on existing open source
crawlers and scrapers to collect content based on the automatic formulation of appropriate
queries. More specifically, the tool is based on open source Web crawlers (e.g., Apache
Nutch, scrapy, crawler4j), search engines and social media querying APls/libraries (e.g. Bing
search API, twitter4j, hbc). In addition, the tool integrates well-known open source scrapers
(e.g. Jsoup and Boilerpipe) in order to extract meaningful text elements out of the
discovered Web pages.

Page 8

4D D2.2-V1.1

For webpages, scraping is performed to get only the meaningful multimedia content out of
the abundance of information that can be found online. It is also important to underline that
in the system that we have developed in the context of the project, we may select to directly
extract the content of a specified web resource, without having to perform any kind of
crawling or searching.

As far as the movie and documentary data are concerned, services and wrappers are
developed upon the provided data from all content providers, apart from Deutsche Welle
(DW). All content providers deliver an API for accessing their data. In the case of DW, its API
is searched similarly to the other web domains. Last, the Europeana API is used for collecting
and accessing artwork from their repository.

The collected content is utilized by the rest of the technical components of the project. More
specifically, the textual content is leveraged for text analysis tasks (WP3,WP5), while the
multimedia content is used for visual analysis tasks such as the aesthetics extraction (WP3),
the spatio-temporal building and object localization (WP4) and the 3D reconstruction (WP4).
The Web and Social Media Crawling tool is the starting point of a preprocessing pipeline that
populates a knowledge base (WP5) and delivers content to a VR game authoring tool and an
application intended for architects and designers (WP6).

Page 9

4D D2.2-V1.1

2 RELATION TO USER REQUIREMENTS

We list here the requirements for the crawler as defined in "D6.2. Technical requirements
pertaining to the crawling and collection of content and accompanying metadata from
publicly available online sources and social media platforms". Each requirement focuses on a
specific type of information/content to be collected.

SHORT NAME CODE Related URs.
. UR_10, UR_11, UR_16, UR_21, UR_22,
1 Web Crawling TR_CR_1 UR_55, UR_56

Description: Using a set of URLs as web entry points, collect all the hyperlinked URLs, up to a
predefined depth. Discovers nodes to scrape.

Comments: Web content should be collected from trustworthy sources provided by user
partners of V4Design. For instance, we collected content from "Nicos Weg" German courses
in collaboration with DW. For the architecture-related user cases, we expect similar sources
but with a stronger focus on buildings, landscapes and historic spatial elements. Links to
such content were provided by user partners.

SHORT NAME CODE Related URs.
. UR_10, UR_11, UR_16, UR_21, UR_22,
2 Query Expansion TR_CR_2 UR_55, UR_56

Description: Discovery of extra keywords relevant to the input query. Add more keywords to
refine the search operations.

Comments: Users usually provide vague input queries. Our objective with query expansion is
to match a larger set of relevant results. We broaden the query by introducing additional
tokens or phrases. For example, the query "Eiffel tower" becomes "Eiffel tower in Paris" and
therefore brings more relevant images of the Eiffel tower and other buildings in Paris that
might be of interest to architects.

SHORT NAME CODE Related URs.
UR_10, UR_11, UR_16, UR_21, UR_22,
3 Web Search TR_CR_3 UR_55, UR_56

Description: With the help of API, search a web application (e.g. Flickr) using textual queries.
Depending on the available APIs, scraping may also be performed.

Comments: We collect the multimedia items (images, videos) pointed to by the shared links.
We leverage Flickr for targeted content to be used in 3D reconstruction.

Page 10

4D D2.2-V1.1

Related SHORT
URS. NAME CODE Related URs.
. UR_10, UR_11, UR_16, UR_21,
4 Web Scraping TR_CR 4 UR_22, UR 55, UR_56

Description: Extracts content from web pages

Comments: Web scraping, web crawling, and any other form of web data extraction can be
complicated. Between obtaining the correct page source, to parsing the source correctly,
rendering JavaScript, and obtaining data in a usable form, there's a lot of work to be done.
Different users have very different needs. Our technique allows users to scrape behind login
forms, fill in forms, input search terms, navigation bars and advertisements and only keep
useful content.

SHORT NAME CODE Related URs.

UR_10, UR_16, UR_21, UR_24,

Social media crawling & TR_CR_5 UR_55

scraping

Description: Search and collect social media posts relevant to a keyword or a user account.

Comments: Not all social networks are equally important for the use cases. For V4Design we
have placed particular emphasis on Twitter. Twitter is known to be the one that provides
good and filtered content when relevant Twitter tags are followed. It also tends to point
(through tiny URLs being mentioned in the twitter message) to the more relevant items in
YouTube.

SHORT NAME CODE Related URs.

UR_10, UR_16, UR_21, UR_24, UR_55
6 FTP Crawling TR_CR_6 -

Description: Looks at the V4Design FTP server folders of a content provider of the V4Design
project to see if any new content has been added, and if so extracts it to add to data storage

Comments: No further comments.

SHORT NAME CODE Related URs.
UR_10, UR_16, UR_21, UR_24,
7 Data model mapping TR_CR_7 UR_55

Description: The function maps incoming data from the incoming data model to SIMMO
JSON. Based on an EDM file or a generic JSON file, check if this JSON is SIMMO compliant. If
not, use predefined maps to make this JSON file SIMMO compliant. Send to data storage.

Comments: Early in the project we agreed that we need a unified data storage model in
order to there is a unique representation of data so that other WPs shall not have to build

Page 11

4D D2.2-V1.1

different codes for each content provider.

SHORT NAME CODE Related URs.

8 Resource filtering TR_CR_8 UR_10, UR_16, UR_21, UR_24, UR_55

Description: Application of classifiers that categorize the resources as appropriate or not for
our purposes.

Comments: For example, in the framework of the object localization task, the STBOL module,
will filter content that does not pertain to buildings or interior objects as there are
prerequisites to perform 3D modeling.

Page 12

4D D2.2-V1.1

3 FRAMEWORK

The goal of the crawling, scraping & search system (for convenience reasons we are going to
name it as V4Design Crawler from now on) we developed for the project is to collect useful
multimedia content that can be then processed by the WP3 and WP4 modules. It is the first
step of a pre-processing pipeline that generates content to be utilized by the VR authoring
tool and the Rhino plugin, the two tools that are going to be developed in the framework of
WP6 and will exploit the generated content. The exact modules that are executed in this
framework are depicted in Figure 2.

Web & Social Media Web.entry »| Web Crawling
\ points
B
Queries Query Web-& Social
expansion media search
v

Scraping

Data Message
Storage Bus

Figure 2: The V4Design Crawler

Content Extraction &]

(~ _

SIMMO DB

Based on the content existing on the web and the social media, we first define web entry
points and search queries. The web entry points are URL addresses of web domains for
which we are interested in collecting their content. Each domain is crawled (TR_CR_1) and as
a result we get a set of webpages that belong to this domain. The search queries consist of
textual terms that are fed into search engines and APIs (web or social media) with the aim of
returning the most relevant results (TR_CR_3, TR_CR_5). Optionally, to optimize their
performance we expand them by enriching it with additional terms using the query
expansion module (TR_CR_2). The results in the searching scenario may differ depending on
the website we are performing search. They may comprise webpages, images, videos or
social media posts.

In both crawling and searching scenarios, the content of the discovered resources is
extracted in an automatic fashion. For webpages, scraping (TR_CR_4) is employed to get
only the meaningful multimedia content out of it. Note that in this system, we may select to
directly extract the content of a specified web resource, without having to perform any kind
of crawling or searching. For example, if we only want to scrape the Delphi Wikipedia
webpage, while we are not interested in any hyperlinked webpage, we feed this webpage
directly to the scraping module, bypassing the crawling process. The extracted content is
sent to the Data Storage system (described in “D6.3. Operational prototypes and user
interfaces for architecture and VR game design application”), which in turn forwards it in a
database. The items saved to the database comply with an extended version of the SIMMO
data model. Additionally, in order to have the system integrated with the project’s platform,
each time a resource is saved to the Data Storage, a message is sent to the message bus
(described in “D6.3. Operational prototypes and user interfaces for architecture and VR

Page 13

4D D2.2-V1.1

game design application”) to notify the directly dependent components that there is
something new to process.

Any system of the project that has to process data from the V4Design Crawler must first
subscribe to the relevant message bus topic and listen to it all the time. Then, the messages
that are published contain all the information needed to retrieve the collected resources
from the Data Storage system.

The V4Design Crawler development involves the following tasks:

i. T2.1: Web crawling and retrieval of textual and multimedia data. This task is the one
having the biggest involvement in the implementation of the system as it contributes
to all the modules that constitute the V4Design Crawler. The web and the social
media are the main sources, from which we are going to collect, reuse and repurpose
content.

ii. T2.2: Movie and documentary data collection. In the framework of this task, services
and wrappers are developed upon the provided data. This applies to all the content
providers, apart from Deutsche Welle (DW) that provide an API for accessing their
data. In the case of DW, its APl is searched similarly to the other web domains that
provide an API.

iii. T2.3: Artwork data collection and retrieval. In this task, artwork is collected from the
Europeana Foundation repository. Access of their data is done by searching the
existing Europeana API.

We can notice that the development of a module of the V4Design Crawler can extend to
more than one task. For example, the web search module concerns three different tasks i.e.
T2.1, T2.2 and T2.3, as we are interested in searching content providers’ data as well.

This deliverable describes the initial implementation of the aforementioned framework. The
final (and extended) one will be detailed in “D2.4. Final web crawling techniques and
annotated corpus”.

Page 14

4D D2.2-V1.1

4 WEB CRAWLING & SCRAPING

The web contains a huge amount of multimedia data that includes buildings, interior objects
and artwork that can be re-used and re-purposed in the framework of the project. These
data can be found in several types of web resources including standard web pages, pdf files
or videos posted on the YouTube platform. The aforementioned objects are of high interest
to architects and game designers, as in a typical 3D modeling software usage scenario they
are either created from scratch or they are used as a source of inspiration to manually create
similar models. At the same time, online discussion mediums, such as forums, provide a
large pool of reviews that can be leveraged by the text analysis tasks in order to generate
content accompanying the re-used objects.

To the end of automating processes, such as the 3D model creation, that are otherwise done
manually and consume a significant amount of the users’ time, this wealth of publicly
available multimedia data coming from web resources and social media can support the
V4Design use cases and feed repositories with relevant content that can be later used by the
other components of the preprocessing pipeline. This pipeline includes the visual and textual
analysis tasks and the Knowledge Base integration (WP3, WP4, WP5). In order to accomplish
exploitation of the available online content, appropriate crawling and scraping tools need to
be developed. These run over a list of web domains that have been defined by the user
partners as appropriate for generating 3D models and acquire metadata useful to have in
their tools for game and architecture design.

In the following sections, the V4Design crawling and scraping components are further
described.

4.1 Crawling

In V4Design, there is a need for tracking web data related to the uses cases so as to feed
such data in the V4Design Data Storage module. Considering the relevant web resources, we
distinguish two main types of data sources with respect to the data discovery functionality: i)
data coming from search engines, social media, and other websites that provide an API for
accessing their data and ii) unstructured, heterogeneous data coming from web pages, pdf
files and forums.

For the first category, searching modules have to be developed that will be described in
Section 5. For the unstructured web-based sources, a crawler component has been
developed that uses as input seed list the URLs matching the web domains of interest.
Specifically, the starting nodes are the URLs of the web resources resulted from the
empirical study that has been conducted by the user partners, while the set of neighbouring
nodes are restricted only on the web pages deriving from the same domain, in order to
perform exhaustive and deep crawling of the specific web domains.

As the crawling is restricted on a specific number of web domains, the chance that those
domains can generate a large amount of data is moderated and therefore, a conventional
design infrastructure can handle the performance demands.

Page 15

4D D2.2-V1.1

4.1.1 Related work

Web crawlers, also known as "spiders", "bots" or "wanderers", are software programs that
automatically go through the Web in a methodical, automated manner for discovering web
resources.

Web crawlers view the Web as a directed graph, where the nodes represent unique web
pages (based on their URL) and each directed edge represents a unique hyperlink between
two pages. Crawlers are capable of traversing the Web graph in several modes, such as in
breadth-first or depth-first manner given the order of hyperlinks within the web pages, or in
best-first fashion based on some ranking, e.g., the number of their incoming links (Olston &
Najork, 2010).

Web crawlers start with a predefined list of seed URLs, fetch and parse each of them, extract
the hyperlinks that these pages contain, place the extracted hyperlinks on a queue and,
systematically, fetch and parse URLs associated with these hyperlinks from the queue, and
so on. This process is iteratively repeated to an arbitrary depth, depending on the targeted
objective that can be until a sufficient number of pages are fetched or a limit on the crawling
depth is reached (i.e. the maximum distance allowed between the current and seed pages).
During their activity, they store information about the visited pages, such as the web page,
the hyperlinks, the content, the metadata, etc. depending on the approach.

The behaviour of a Web crawler is bound by a combination of several policies:

* the selection policy that states which pages to download;

* the re-visit policy that determines how often a page should be checked for changes in
its content;

* the duplication policy that examines the Web page content similarity issues;

* the politeness policy that provides the rules for avoiding overloading a website or
webserver and

* the parallelisation policy that specifies how to coordinate distributed Web crawlers.

Additionally, a web crawler has to respect the instructions provided by the web domain
owner in the robots.txt file. Robots.txt is a file placed in the root of the website hierarchy
(e.g. https://www.example.com/robots.txt) hosting instructions for the crawler e.g., which
areas of the website should not be processed or scanned.

Today, there exist several well-established web crawlers. Among them, we distinguish
Heritrix', Apache Nutch? and crawler4j® as the most widely-used, open-source software
programs. Heritrix is the Internet Archive’s open-source, extensible, web scale project that is
supported by a big community of users. Its well-documented code and the easy to use Ul
render it more like a light solution for a generic use. Apache Nutch is a more robust, big scale
and Google-bot comparable crawler that is highly extensible and open source. Crawler4;j is
an open source web crawler written in Java which provides a straightforward interface for
crawling the Web. By using it, one can quickly setup a web crawler with multiple threads.

! https://webarchive.jira.com/wiki/display/Heritrix/Heritrix

% http://nutch.apache.org/

3 https://github.com/yasserg/crawler4j

Page 16

4D D2.2-V1.1

As an alternative option for crawling, one can choose to use web applications such as
Octoparse® and import.io®. They have the advantage that they do not require any
programming skills as their functionalities are supported via a web user interface. However,
so as not to depend on third-party web-based services, we opted to use an open-source
programming library.

4.1.2 Approach and implementation

The V4Design crawling component is responsible for periodically running and extracting the
hyperlinks identified in the fetched web pages, pdf files and forums. The unique URLs
associated with these hyperlinks are then stored in a database. Once the crawling process
has been completed, the discovered URLs are forwarded to the scraping component for
extracting the content that these pages contain. Figure 3 provides an abstract view of the
crawling & scraping architecture, as a subset of the general architecture presented in the
entire system framework (Section 3) isolating the functionalities presented in this section.

Links Extraction -

Web Crawling Unique URLs Web scraping
DB

Figure 3: Crawling and scraping modules

Initially, the list of related web domains defined by the user partners is used as seed URLs.
The crawling process starts from the home page of each web domain. The crawling
component obtains the home page and saves it. Then, it parses the document, extracts all
hyperlinks enclosed to the home page, and then extracts the URLs associated with these
hyperlinks. Next, the crawler filters these URLs in a way that only URLs pointing to a
webpage in the same domain or PDF files pass the filter. The filtered URLs are stored in a
temporary repository. The same process is repeated for every unvisited URL in the
temporary repository. Assuming that the starting webpage is the parent and the unvisited
linked webpages are the children, the temporary repository can be represented as a tree.
The crawler is using the breadth-first algorithm to traverse this tree. This iteration is over
when there is no unvisited URL in the temporary repository or when the number of
iterations has reached the predefined crawling depth. The depth is variable depending on
the structure of the crawled website. Last, the unique URLs from the temporary repository
are stored in a database. The aforementioned process is executed whenever there is a need
to crawl new web domains and the database is updated with new URLs (incremental
crawling), while URLs already stored in the database are ignored.

Considering the crawling of forums, we have observed that most of them are open access
and thus, the crawling component does not require additional configurations to parse their
content. Therefore, the crawler already developed for webpages has been also used for
forums assuming that a forum is a webpage that hosts forum threads and discussions. Links
to PDF files are stored in the database as well.

* https://www.octoparse.com/

> https://www.import.io/

Page 17

4D D2.2-V1.1

The resulting database contains a list of URLs of the discovered resources. It has to be noted
that at this stage only address links are stored. Extracting and saving the actual content of
the discovered webpages is out of the scope of this module as this procedure is executed by
the scraper. This comprises the main difference between web crawling and web scraping.
Crawling is conducted to discover a list of links, while the responsibility of the scraper is to
extract meaningful content out of these links.

For this project, we used Crawler4) as it is able to support our initial crawling needs and due
to the fact that it provides capabilities of setting up customized crawlers in JAVA
programming language, the main one used in the V4Design Crawler application. Based on
that, we configured the default Crawler4) implementation in order to crawl the user defined
domains and save the collected URLs in a MongoDB database along with a timestamp that is
utilized to identify a unique crawling operation. It does not send the output to the
centralized Data Storage component as it constitutes an intermediate and incomplete form
that is not meaningful without being processed by the Scraping module. It runs on a
Windows 10 64-bit machine, and from the entire list of the URLs, it keeps only the ones that
are associated with a webpage or a PDF file.

4.2 Scraping

Scraping as a term refers to the process of automatically extracting information out of any
human-readable output. Examples of such output are example PDF files and images. In this
project we are mainly interested in web scraping, which is a specialized instance of scraping
that is performed only on websites and its goal is to filter out redundant features such as
navigation bars and advertisements. Web scraping is also related to indexing, focusing on
the transformation of unstructured data on the web, typically in HTML format, into
structured data that can be stored and analysed in a central local database. Usually, the
scraping techniques depend on the type of the website (i.e., static or dynamic). Additionally,
the scraping techniques may depend on the way in which the information is structured or
presented and scrapers have to be configured based on that structure. For example, a web
scraper extracting content from a forum needs to be configured differently than the scraper
extracting content from articles. Also, the same scraper may need different configuration
when extracting 2 different domains from the same type of website (e.g., 2 different
forums).

In V4Design, there is a need for extracting and aggregating the content from several
heterogeneous sources in a central repository using a common format. Once the collected
data is stored, it is then consumed by the rest pipeline components, such as the Text
Analysis and the Aesthetics Extraction ones.

4.2.1 Related work

In scraping frameworks the selection of elements on a web page is defined as selection
function while the acceptance or rejection of a selection result from a web page is defined as
validation function. The selection function is responsible for choosing a piece of information
(i.e., an HTML element, a list of HTML elements, tuples of text, etc.) from a given web page
and delivering the selection results in a suitable format. XPath expressions were specifically
invented in order to designate elements in an XML tree structure. Also, regular expressions

Page 18

4D D2.2-V1.1

and context free parsers have been widely used to locate specific elements by their content
and structure.

A validation function utilizes textual dimensions of both the selection result along with the
original web page. However, when the element to be selected dynamically changes, other
dimensions might be more effective, such as the context (e.g., the tree structure from the
grand parent of the selected element) or the appearance of a website.

Today, several scrapers exist supporting a wide range of features and functions. Example
open-source libraries that are capable of traversing and manipulating HTML documents are
JSoup® and HTMLUnit’ .

Import.io® is a web-based scraping tool. By following an easy step-by-step plan and without
writing any code, someone can select the data to scrape and the tool does the rest. Also, it
supports scraping of multiple URLs at once.

DEiXTo® (or AEiXTo) is a web data extraction tool that is based on the W3C Document Object
Model (DOM). It allows users to create highly accurate “extraction rules” (wrappers) that
describe what pieces of data to scrape from a website.

The main idea of Kimono Labs™® service is to create APIs for websites which don’t have one;
another term would be web scraping. It enables not only to generate raw data (in JSON, CSV
or RSS format) from a web page, but even instantly create a web application to make those
data available on the web.

ScraperWiki'! is a web-based platform for collaboratively building programs to extract and
analyse online data, in a wiki-like fashion. This tool is appropriate for massive-scale
applications and compared to other tools, it is the most advanced one.

easy Information Extraction'® (easlE) is a framework for generating Web information
extractors and wrappers. easlE offers a set of wrappers for obtaining content from static and
dynamic HTML pages by pointing to the html elements using css selectors. An additional
functionality is the definition of a configuration file that allows automatically extracting
content of a page.

The boilerpipe library™® provides algorithms to detect and remove the surplus "clutter"
(boilerplate, templates) around the main textual content of a web page. It provides specific
strategies for common tasks (e.g., news article extraction) and may also be easily extended
for individual problem settings.

® https://jsoup.or

’ http://htmlunit.sourceforge.net/

® https://import.io/advanced-data-platform

? http://deixto.com/

1% https://www.kimonolabs.com/

" https://scraperwiki.com/

12 https://github.com/MKLab-ITI/easlE

3 https://code.google.com/archive/p/boilerpipe/

Page 19

4D D2.2-V1.1

4.2.2 Approach and implementation
The V4Design scraping module takes two different types of input:
* The URL database that results from the crawling module

* Standalone webpages that need to be directly scraped (without executing any kind of
crawling on them)

The extracted information is converted into SIMMO format (described in Section 7) and sent
to the Data Storage module that saves it into a MongoDB database.

We have implemented a content scraping component that extracts their content according
to the type of web resource. In every update of the unique URLs and whenever new
standalone webpages to be scraped are introduced, the component incrementally extracts
new content that has not been listed in the respective DB until then. This module not only
executes web scraping, but also extracts content from PDF files as both webpages and PDF
files are considered as useful for our purposes.

For webpage content extraction, we made use of the Jsoup JAVA library. For the initial
version of the module, we target the exact elements of the HTML structure that contain the
information we are interested in for each website that is scraped. Their definition is made
manually by constructing CSS rules based on element classes and ids. These rules can be
directly applied with the help of the used JAVA library to extract the final content to be
stored in the Data Storage module. For each webpage, we save their text in both raw and
HTML format as well as the multimedia content they contain. This approach produces
acceptable results as long as we have a limited website collection. Nevertheless, in order to
develop a scraping module that is scalable to the introduction of new and significantly
different websites in terms of their HTML structure, in the final version we are planning to
set up a different approach that is more flexible and that can be applied to any website.

For PDF text extraction, we have used Apache PDFBox. A new PDF object is added to the
initial SIMMO model at the same level of Webpage and Post objects and instantiates the
Document object. The purpose of this modification was to enable storing a PDF object that
contains a Text object.

Page 20

4D D2.2-V1.1

5 WEB & SOCIAL MEDIA SEARCH

In the previous section, the aim is to collect information based on the assumption that any
webpage that belongs to a specified website includes data that can be utilized for the
project’s purposes. However, it can be easily observed that not all websites fall into this
category. There exist websites where only a small percentage of their webpages, which do
not necessarily fall into a unique subdomain, can be exploited. Furthermore, there are cases
where we are not able to define specific websites but we are interested in collecting content
based on some search criteria. In different scenarios, we wish to collect information from
social media instead of websites. Social media platforms enable anyone to circulate relevant
to our project posts along with multimedia. In this section, we present all the web and social
media searching tools that were developed for various platforms that contain
heterogeneous content and provide different ways to access their data (the most common
one being by means of a search API).

5.1 Flickr

Flickr is a website created in 2004 that enables users to upload multimedia content, either
photos or videos. Any user can access its contents for free in a user-friendly interface (see
Figure 4), but the upload feature is activated only for registered accounts.

flickr You Explore Create Get Pro Q, eiffel tower m

Photos People Groups

]] SEEEN 08 Memam Advanced =
uE = !

Any license ¥ SafeSearch on v Relevant v T

Everyone's photos View all 342,587

Figure 4: The Flickr website

Page 21

4D D2.2-V1.1

It became so popular that now it is visited by over 90 million users every month* and
millions of new images are uploaded on a daily basis. In a very-high traffic day, this number
reaches up to 25 million photos®. In total, Flickr hosts more than 10 billion images*®. We can
realize from that fact that Flickr is more than a suitable source for gathering multimedia
resources of famous buildings, interior objects and so forth.

In terms of accessing Flickr's content programmatically in the same way users accessing by
typing queries in the web interface, the website is accompanied with an API that exposes its
data. The Flickr API consists of a set of callable methods, and some APl endpoints. From this
set, we made use of the following methods:

* flickr.photos.search: It is the most important of the methods, as it simulates a search
function. It returns a photos list that is relevant to the input user query. As much
information accompanying the returned results is not provided by this method, other
methods of the APl have to be called to retrieve more details.

* flickr.photos.licenses.getinfo: Returns the identifiers of the licenses existing in the
photos. It is used in order to extract only the freely available content. These ids are
given as an additional parameter in the “flickr.photos.search” methods.

* flickr.photos.getExif: Returns the EXIF tags for a photo with a specified id. It is used to
enrich the resource saved in the Data Storage with more metadata.

* flickr.photos.comments.getList: Returns the comments for a photo, given its id as
input. Useful to get reviews of a specified multimedia resource.

For V4Design, we used a JAVA wrapper of the Flickr API, named flickr4java'’ to search and
retrieve multimedia items and save them as SIMMOs in the Data Storage. As all the needed
information can be drawn from the aforementioned methods, no scraping has to be
performed.

5.2 Search Engines

Another approach for acquiring data is by querying search engines. General-purpose search
engines are extensively used to search for web content relevant to an input text query or an
image, with the most widely known one being Google. According to eBizMBA’s ranking'® for
January 2019 (see Table 1), the top three most visited search engines are Google, Bing, and
Yahoo!, with Google having expectedly and indisputably the largest number of visitors.

For the framework of our project, search engines can be utilized in two ways: a) to use the
search results as entry points for a crawling process start, b) to simply scrape the resulting
webpages. Next, we describe the implementations made for two search engines, Google and
DuckDuckGo. DuckDuckGo was utilised because it doesn’t store, collect or share personal

% https://www.flickr.com/jobs/

!> https://code.flickr.net/2017/01/05/a-year-without-a-byte/

'® http://blog.flickr.net/en/2015/05/07 /flickr-unified-search/

7 https://github.com/boncey/Flickralava

'8 http://www.ebizmba.com/articles/search-engines

Page 22

4D D2.2-V1.1

information. As V4Design takes seriously into consideration GDPR and takes actions related
to the protection of personal data and the preservation of privacy we opted to use
DuckDuckGo since it is also free of charge.

Table 1: Top 10 search providers ranked by estimated unique monthly visitors (January 2019)

Provider Estimated Unique Monthly Visitors
Google 1,800,000,000
Bing 500,000,000
Yahoo! Search 490,000,000
Baidu 480,000,000
Ask 300,000,000
Aol Search 200,000,000
DuckDuckGo 150,000,000
WolframAlpha 35,000,000
Yandex 30,000,000
WebCrawler 25,000,000

5.2.1 Google

For accessing functionalities of the most used search engine in the World Wide Web, Google
provides the Custom Search JSON API'°, a RESTful API that supports requests for searching
webpages and images. As its name implies, results are given in JSON format. Its free version
supports up to 100 queries daily and for each query a maximum of 10 results can be
returned. Even if the supported number of results is small and restrictive, in most cases it is
difficult to find relevant content beyond the top 10 results. We can also infer that, if we
think of a web search from a user perspective. In a typical search scenario, there are few
cases where the required content can be found after the first page of results. In the
V4Design implementation, a simple HTTP query is done to the APl and the results are saved
into the same unique URL database that is also used for the crawling module.

5.2.2 DuckDuckGo

DuckDuckGo is a search engine created by Gabriel Weinberg on 2008. Parts of its code are
open-source, however its core still remains closed-source. The noteworthy difference that
distinguishes DuckDuckGo from the other popular search engines is that it protects users’
privacy by not storing and using any personal data.

DuckDuckGo, unlike other search engines that provide an API, such as Google and Bing, does
not have an equivalent way for accessing its search results. Instead, in this webpage there is
a non-Javascript HTML version that makes it very straightforward to detect and scrape its
search results. Therefore, for the purpose of the V4Design implementation, given the query

19 https://developers.google.com/custom-search/vl/overview

Page 23

4D D2.2-V1.1

terms, we formulate an HTTP GET request to its HTML version, retrieve its results page HTML
code using JSoup (the library we also use for the scraping module) and finally extract the URL
addresses from the tree structure of the webpage by pointing to predefined elements that
exist in the DuckDuckGo webpage.

5.3 Data from content providers

5.3.1 DWAPI

Usage in V4Design

The DW API provides numerous types of data for V4Design purposes in an easily accessible
and processable manner. Besides providing media files, like images, videos, text, and audio,
the API also provides rich metadata for contextualisation. In short, the DW API supports
V4Design through provision of

* images and videos that can be used for 3D reconstruction (WP4) and aesthetics
extraction (WP3)

* text and audio that can be used for textual analysis and summarisation (WP5)

e query functions for recent, relevant or related items through search terms to
populate the knowledge base (WP6)

¢ articles that add semantic value to media items for defining ontologies and linked
data (WP5)

* rich technical and non-technical metadata (WP5/WP6).

Since DW content is very diverse in terms of regionality, topic, as well as language and it
already covers a long time range, it is ideally suited to cover the needs of creative designers,
architects, game creators and other potential V4Design target groups.

For pilot use case 3, the development of a VR learning experience based on the videonovela
"Nicos Weg," the APl makes all videos published easily accessible. They can be retrieved
using the global search resource of the API.

http://api.dw.com/api/search/global?terms=Nicos+Weg&languageld=1

It returns an article and a video result item. Both have additional text information within a
teaserText property that can be used for semantic analysis and contextualisation. Using this
analysis, it can be tagged and made accessible in the V4Design knowledge base in a more
convenient way. Images and videos in this use case mostly show people in an urban
environment. Thus, it is less suited for 3D reconstruction through photo- or videogrammetry,
since it is often missing baseline movement of the camera and has people moving in the
foreground. However, the results from object location algorithms (STBOL) can be very
helpful in providing game creators with a list of objects that appear in the scenes and
potentially offering already pre-fabricated 3D models. Latest approaches of generative
adversarial networks may even help produce 3D models from single frame images for known
masks that are detected through object location.

For the pilot use case 4, numerous drone videos of Bauhaus architecture can be used within
V4Design that are offered through the DW API. The approach for 3D reconstruction by WP4
is twofold. For once, since the DW DailyDrone videos use graphical overlays for additional
information, they are less suitable for 3D reconstruction. So, additional raw footage is being

Page 24

4D D2.2-V1.1

provided, but needs to be put into context. This is where the DW API can be really helpful,
since it provides a very convenient way to retrieve all necessary metadata from the article
pages and teaser sections of a video. This can then be used to complete the V4Design
knowledge base entries.

The rest of this subsection describes access to and use of the key functionalities of the DW
REST API Version 1.0.4.

Resource description

The DW REST API is primarily used for the DW mobile app: DW — Breaking World News. It is
not a publicly advocated API, but no access rules are enforced as of this writing. The API
closely mirrors content available on the DW website. The DW API provides access to articles,
video, audio and image galleries. Results are returned in JSON. The base APl URL is
https://api.dw.com. It features several resources that group various endpoints to facilitate
structured queries to the DW APIl. Some resources may have nested resources. They are
described within their parent resource.

The starting point for all reference is the configuration resource available at
https://api.dw.com/api/config.

API Key & Tokens

Currently, no APl key or oauth access token are needed to make requests to the DW API.
However, the APl is not generally public and this documentation is for partners within
projects, only.

Search

The Search API allows you to perform the same search that is available via the advanced
search on the DW website. This means that you can use modifiers such as startDate:Date,
endDate:Date, or contentTypes:contentType within the query to modify the results you get
back.

Global search pattern

This global search is looking for keywords in articles and media metadata and returns all
objects, where the search term can be found.

/api/search/global?

Relevance search pattern

The relevance search returns all results that have a semantic relevance to the search term.
/api/search/relevant?

Autocomplete search pattern

The autocomplete search returns a list of suggested terms that can have a defined maximum
of suggestions returned.

/api/search/autocomplete?
Related search pattern
The related search patters returns results that have a semantic relation to the search term.

/api/search/related?

Page 25

4D D2.2-V1.1

Resource details
Configuration Feed

The configuration feed is the main entry point and schema document for the DW API. It can
be called at https://api.dw.com/api/config/init. The returned JSON document is structured as
follows ({...} mark omissions for brevity):

"apiVersion" : "1.0.4",
"supportedLanguages" : [{
by
{
"id" : 2,
"languageCode" : "en",
"regionCode" : "GB",
"rtl" : false,
"displayNameEnglish" : "English",
"displayNameLocalized" : "English",
"defaultChannel”™ : 1,
"dataPrivacyPolicyUrl" : "https://api.dw.com/api/detail/article/18265246"
boo A
}
1,
"trackingConfig" : { ... }
"epgConfig" : { ... }
"urlConfig" : {
"baseApiUrl" : "https://api.dw.com",
"globalSearchUrlPattern" : "/api/search/global?...",
"relevanceSearchUrlPattern" : "/api/search/relevant?...",
"autoCompleteUrlPattern" : "/api/search/autocomplete?...",
"mainNavigationUrlPattern" : "/api/navigation/{locale}",
"indexingDataUrlPattern" : "/api/indexing/{languageId}",
"mostRecentArticlesLanguageUrlPattern"
"/api/list/article/recent/{languageId}?...",
"mostRecentVideosLanguageUrlPattern"
"/api/list/video/recent/{languageId}?...",
"mostRecentVideosProgramUrlPattern"
"/api/list/video/recent/{languageld}/program/{programId}?...",
"mostRecentVideosSeriesUrlPattern”
"/api/list/videos/recent/{languageld}/series/{seriesId}?...",

"mostRecentVideosThematicFocusUrlPattern"
"/api/list/video/recent/{languagelId}/thematicfocus/{thematicFocusId}?...

"mostWatchedVideosLanguageUrlPattern"
"/api/list/video/mostwatched/{languagelId}?pageIndex={pagelIndex}",

"offlineData"
"/api/offline/{languageld}?fromStructurepage={fromStructurepage}",
"programListUrlPattern" : "/api/epg/list/program/{languageId}",

"programGroupsUrlPattern”
"/api/epg/programgroups/topics/{languageld}",

"thematicFocusListUrlPattern" : "/api/epg/thematicfocus/{languageId}",

"epgUrlPattern"
"/api/epg/{channelId}?languageld={languageld}&days={days}&hours={hours}",

"relatedSearchUrlPattern" : "/api/search/related?...",

"eds" : "https://buwa.dw.com/eds/germanElection/2017",

"dvapp" : "https://commons.dw.com/buwa"

by

Page 26

4D D2.2-V1.1

"appUpdate" : {...}

Global search pattern

/api/search/global?\\
terms={terms}\\
&languageId={languageId}\\
&contentTypes={contentTypes}\\
&startDate={startDate}\\
sendDate={endDate}\\
&sortByDate={sortByDate}\\
&pagelIndex={pageIndex}\\
&asTeaser={asTeaser}\\
&programs={programs}\\
&themes={themes}\\
&ids={ids}

Global search example
https://api.dw.com/api/search/global?terms=delphi&languageld=2

Global search response

See link above.

Relevance search pattern

/api/search/relevant?\\
terms={terms}\\
&junctionMode={junctionMode}\\
&languageId={languageId}\\
&contentTypes={contentTypes}\\
&startDate={startDate}\\
sendDate={endDate}\\
&sortByDate={sortByDate}\\
&pagelIndex={pageIndex}\\
&asTeaser={asTeaser}\\
&programs={programs}\\
&themes={themes}\\

&ids={ids}

Relevance search example
https://api.dw.com/api/search/relevant?terms=Bali+Agung&languageld=2

Relevance search response

See link above.

Autocomplete search pattern

/api/search/autocomplete?\\
prefix={prefix}\\
&languageId={languageId}\\
&maxHits={maxHits}

Autocomplete search query example
http://api.dw.com/api/search/autocomplete?prefix=Fede&languageld=2&maxHits=10

Page 27

4D

D2.2-V1.1

Autocomplete search response example
{

"prefix" : "Fede",
"resultCount" : 10,
"results" : [

"federal reserve",

"federica mogherini",
"federal",

"federal court of justice",
"federer",

"federal statistics office",

"federal constitutional court",

"federal election",
"federation",
"federal police"

}

Related search pattern

The related search patters returns results that have a semantic relation to the search term.

/api/search/related?

Related search example

https://api.dw.com/api/search/relevant?terms=Gaugin&languageld=2

Related search response

See link above.

Search query Parameters

Mandatory
Parameter Description Example or
Optional
A comma-separated list of
Terms strings terms=Bali%2CAgung Mandatory
An integer value that
represents a language Id. See
languageld [=2 languageId=2 (English) Mandatory
https://api.dw.com/api/config/init
- supportedLanguages

Page 28

4D

D2.2-V1.1

contentTypes

A comma-separated list of
content types that are being
searched for and returned
from a set of

¢ Article

e Audio

¢ Video

* ImageGallery

contentTypes=Article%2CAudio

Optional

startDate

A date string that marks the
start of the search period in
the format of YYYY-MM-DD.
The default value is 2 years
before current day.

startDate=2017-05-27

Optional

endDate

A date string that marks the
end of the search period in
the format of YYYY-MM-DD.
The default value is the
current day.

endDate=2019-05-27

Optional

sortByDate

A boolean value that is set
true will sort the results in
decending order from most
recent to oldest. The default
value is false.

sortByDate=true

Optional

pagelndex

An integer value of the
current page index
requested. When results are
provided over multiple pages,
the paginationinfo field
contains the nextPageUrl
that references the
pagelndex of the page
following the current, if it
exists.

pagelIndex=2

Optional

asTeaser

A boolean value to indicate
requesting only the teaser
headers instead of the full
article. The default value is
false.

asTeaser=true

Optional

Page 29

4D D2.2-V1.1

A comma separated list of
integer values of a program
ID. Returned as an array of
programlds.

programs 262267 Optional

A comma separated list of
integer values of a category
ID. Returned as an array of
categorylds.

themes Optional

A comma separated list of
integer values of a content
ID. Returned as an array of
contentlds.

ids 45761438 Optional

5.3.2 EFAPI

About Europeana Collections

Europeana brings together the collections from over 3500 heritage institutions from across
Europe. Through www.europeana.eu one can access over 58 million objects from music to
books, from archaeological findings to paintings. V4Design aims to enable the re-use and re-
purpose of data of interest to architects and video game designers. The Europeana corpus is
broad and representative of what one may find in the collections of Europe's libraries,
archives and museums. Europeana works to ensure accurate rights statements to inform the
user what they can or cannot do with the objects.

In the context of V4Design, Europeana is a treasure trove with a continuous flow of new or
improved digital cultural heritage data being added to the corpus. Relevant material for
V4Design are all openly licensed content depicting buildings in artworks or drawings,
publications, maps of cities and places, videos of buildings (very limited), archival footage. It
should be noted that contemporary material is mostly restricted and is not suitable for
inclusion in V4 Design.

About the Europeana REST APIs

The Europeana Foundation offers several APIs under the umbrella of the Europeana REST
API, that allows users to build tools and applications that use the wealth of our collections
drawn from the major museums, libraries, archives and galleries across Europe. The
Europeana collections contains over 50 million cultural heritage objects, from books and
paintings to 3D objects and audiovisual material, that celebrate over 3,500 cultural
institutions across Europe.

Over the past couple of years, the Europeana REST API has grown into a wide range of
specialized APIs. It offers several APIs that can be used not only get the most out of
Europeana but also to contribute back. If you want to search Europeana in a simple way (for
instance “give me all results for the word cat”), you can then use the Search API. But if you
are looking for a way to delve into the structured metadata of Europeana (e.g. to ask the
guestion "what are all the French 18th-century painters with at least five artworks available
through Europeana”) then the SPARQL service is more appropriate. On the other, if you

Page 30

4D D2.2-V1.1

want to get all the metadata associated with a single item, then you can use the Record API.
It also possible to obtain a larger amount of metadata and ultimately harvest the complete
Europeana repository by using the OAI-PMH Service. Regarding contextual information that
is associated to items, Europeana also offers an Entity APl that gives you access to
information such as Topics, Persons and Places. Lastly, if you want to contribute information
about the items that are available on Europeana, you can do it via the Annotations API.

The Europeana REST API is available free of charge and only requires an access key which
needs to be requested prior to its use. More information and technical documentation about
each API, as well as the request form for an access key and the Terms of Use, can be found
at the dedicated APl documentation homepage®.

Using the Europeana REST APIs to collect sample data

As was described in “D2.1. Initial visual and textual dataset creation and legal and ethical
requirements”, in the first phase of the project, both the Search APl and Record APl were
used to extract the metadata necessary to build the sample dataset that was used for
several tasks in the V4Design consortium. This dataset contained metadata for
approximately 23.400 objects formatted in JSON from which 23.400 images (linked from the
metadata) were downloaded from the data providers. Note that this dataset was created
early in the project and without the usage of the main V4Design Crawler application. The
dataset was done using a Python 3 script written for this purpose which performed the
following two step requests to the Europeana APls:

Step 1: Search for all items that matched the V4Design selection criteria

The Search APl was chosen to perform the selection on Europeana content, given its ability
to fulfill the selection criteria that was needed and the one that offers the best performance.

This APl is available via the URL presented below and can be further tailored by an extensive
list of parameters as defined in the public documentation®”.

https://www.europeana.eu/api/v2/search. json

For the purpose of the V4Design project, only a limited number of parameters were used as
defined in the following template request:

GET
https://www.europeana.eu/api/v2/search.json?query=QUERY&rows=ROWS&cursor=CU
RSOR&reusability=REUSABILITY&wskey=APIKEY

Where the variables in uppercase are used in the following way:

Variable Description

20 https://pro.europeana.eu/resources/apis

L https://pro.europeana.eu/resources/apis/search

Page 31

4D D2.2-V1.1

name

QUERY A search query that combines using OR clauses (see syntax section on the
Search APl documentation??) the keywords of the PUCs, which can be found
in Appendix 3 of D2.1.

ROWS The number of items that are retrieved in each request.

CURSOR A cursor mark from where to start the search result set when using deep

pagination. The value must be set to * to start cursor-based pagination and
following requests must use the value that is returned in the response within
“nextCursor” field.

REUSABILITY | Filters by copyright status. Acceptable values are open, restricted or
permission. In the scope of V4Design only “open” was used.

APIKEY The access key obtained after registration.

Given that a large number of objects is expected to be retrieved upon a query to the service,
the cursor based pagination was used to be able to scroll along the complete result list while
preserving a constant time performance upon each page request. This means that multiple
requests need to be made varying only on the value of the “CURSOR” until it either reaches
the total number of items or the client is satisfied with the number of items obtained until
then.

Each response, contains a subset of the metadata for a limited number of items. Given the
fact that the metadata present in the response is not sufficient to meet the requirements for
the SIMMO model, a second API (Record API) was used by following the URL present in the
“link” field in the JSON response, as can be seen in the Example below:

{

"apikey": "api2demo",
"success": true,
"requestNumber": 999,
"itemsCount": 1,
"totalResults": 1,
"items": [
{
"id": "/11621/ NHMUK PAL PV M 26793",
"link":

"https://api.europeana.eu/api/v2/record/11621/ NHMUK PAL PV M 26793.json?w
skey=APIKEY"
s

. more items

Step 2: Retrieve complete data for an item

= https://pro.europeana.eu/resources/apis/searchitsyntax

Page 32

4D

D2.2-V1.1

The Record API was used to obtain a more complete set of metadata fields that describe the
item. This APl is available via the URL presented below and can be further tailored by an
extensive list of parameters as defined in the public documentation®.

https://www.europeana.eu/api/v2/record/ITEM ID.FORMAT

Where the variables in uppercase are used in the following way:

Variable name | Description

ITEM_ID The identifier of the item, e.g. “/11621/_NHMUK_PAL_PV_M_26793".

FORMAT The output format, such as: “json”, “rdf”, “json-Id”.

The JSON output format was used for mapping, from which the following EDM classes and
properties were considered:

Class: edm:Proxy

Property Description
rdf:about The identifier of the Item.
dc:title

A name given to the resource. Typically, a Title will be a name by
which the resource is formally known.

dc:description

A description of the resource.

dc:language

A language of the resource.

dcterms:issued

Date of formal issuance (e.g., publication) of the resource.

dc:creator

An entity primarily responsible for making the resource. This may
be a person, organisation or a service.

edm:hasMet

edm:hasMet relates a resource with the objects or phenomena
that have happened to or have happened together with the
resource under consideration.

dc:subject

The topic of the resource.

dc:type

The nature or genre of the resource. Type includes terms
describing general categories, functions, genres, or aggregation
levels for content.

z https://pro.europeana.eu/resources/apis/record

Page 33

4D D2.2-V1.1

dc:format The file format, physical medium or dimensions of the resource.
determs:medium The material or physical carrier of the resource.
determs:temporal Temporal characteristics of the resource.

dcterms:spatial Spatial characteristics of the resource.

dc:coverage The spatial or temporal topic of the resource, the spatial

applicability of the resource, or the jurisdiction under which the
resource is relevant.

Class: ore:Aggregation

Property Description

edm:databProvider The name of the data provider of the object (i.e. the organisation
providing data to an aggregator).

edm:isShownBy The URL of a web view of the object.

edm:hasView This property relates an ORE aggregation about a CHO with a web
resource providing a view of that CHO. Examples of view are: a
thumbnail, a textual abstract and a table of contents.

Class: edm:WebResource

Property Description
dc:description An account or description of this digital representation.
edm:rights The value in this element will indicate the usage and access rights

that apply to this digital representation. The rights statement
specified at the level of the web resource will "override" the
statement specified at the level of the Aggregation. The value in
this element is a URI taken from the set of those defined for use
in Europeana. A list of these can be found at
http://pro.europeana.eu/web/available-rights-statements

ebucore:width The width of a media file in pixels.

ebucore:height The height of a media file in pixels.

ebucore:fileByteSize | The size of a media file in bytes.

ebucore:duration The duration of a media file in ms.
ebucore:frameRate The frame rate of the video signal in frames per second.
edm: codecName The name of a device or a computer program capable of encoding

Page 34

4D D2.2-V1.1

or decoding a digital data stream or signal, e.g. "h264".

Live integration with Europeana REST APIs

For the future live addition of Europeana data in the V4Design Data Storage and Retrieval
module, we plan to integrate the Search and Records APIs as an additional submodule in the
V4Design Crawler. However, when considering that data can change on Europeana as a
result of an update from data providers, synchronization mechanisms will need to be
implemented on the V4Design side that may impact the way that the APIs will be used which
will be further investigated in the next phase of the project.

5.4 Twitter

To address and support searching in social media platforms, we chose to collect content
from Twitter. Compared to other social media platforms, Twitter provides vast amounts of
publicly available data via its APIs. Two of its APIs stand out for this purpose: (i) the general
Twitter API** and (ii) the Twitter Streaming API>.

The general Twitter APl allows for running specific platform queries for many of the Twitter’s
data models. For example, it allows for requesting information about a given Twitter user
profile including the list of their followers and friends, and their posts (i.e. tweets).
Generally, the largest part of the user activity in Twitter is available through the general API,
with the exception of the private messages (direct messages) and the private profiles.
However, it is uncommon for Twitter users to make their profiles private, contrary to other
popular social media platforms. The Twitter API provides both application-level and user-
level access: the former provides general access to the data available on the API, whereas
the latter requires user authentication and provides data related to the authenticated user.

On the contrary, the Twitter Streaming API provides access to similar data models with the
general Twitter API, but in an event-driven way. This means that the Streaming API allows
for creating a persistent connection to Twitter and monitor new tweets in real-time for a
given set of profiles and/or a given set of keywords. Additionally the event-driven
connection receives events, such as the deletion of a tweet.

Lots of official and unofficial libraries that act as a wrapper for the Twitter APls have been
created in many different programming languages (e.g. Python, C++, PHP, Ruby). Example
libraries for JAVA are hbc?® and Twitter4)?’. The former one is built by Twitter and consumes
the Streaming API. For V4Design initial implementation, we selected the latter one, which is
an open-source unofficial Java library for the general Twitter API, for the reason that the
current needs of the project did not require streaming real-time data. Therefore, we used
Twitterd)’s functionalities to collect twitter posts from specified user accounts and send
them to the Data Storage module. Similar to searching through other APls, scraping is not
needed here as well.

2 https://developer.twitter.com/en/docs/tweets/search/overview

 https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

% https://github.com/twitter/hbc

2 http://twitter4dj.org

Page 35

4D D2.2-V1.1

6 QUERY EXPANSION

The retrieval of content using the web & social media search module requires that proper
gueries are determined, as they are indispensable as an input. These queries can be created
in three different ways: a) manually, b) semi-automatically and c) automatically.

Manual is the most straightforward way of feeding queries to the search module, as it is
similar to a typical usage of a search engine in the web. In our project, the queries are
produced by the user partners, based on their informational needs for the final tools to be
developed.

To tackle queries that are vague and difficult to handle by search engines, they can be
transformed by adding and/or removing terms. When these modifications are performed
automatically by the system, while the initial query creation still remains manual, the query
creation method is characterized as semi-automatic. In such scenarios, the changes to the
guery can be either applied directly by the system, without asking for confirmation by a user,
or can be provided as suggestions for a user who is the person that makes the final decision
for the search action.

The approach that is exclusively automatic does not involve the manual formulation of a
guery; it simply considers a domain of interest as this is exemplified by a set of documents
(e.g., Web pages and/or social media posts) relevant to the domain. Machine learning and
text mining techniques can then be applied so as to extract the most important domain
concepts, corresponding either to lists of terms or (Boolean) expressions that can be used as
automatically formulated queries for discovering further relevant information. This approach
is outside the scope of the current project as we consider that the human intervention is
essential for the data collection process. Thus, we follow the first two of the three
mentioned approaches.

Query reformulation is a general term that encapsulates a wide range of query
transformation methods. The most representative ones are query expansion, query
substitution and query reduction. A query can be reformulated by making use of one or more
of these methods simultaneously.

Query expansion has been successfully used in the past for information retrieval, where it
has been prove to optimize performance in various applications (Carpineto and Romano,
2012). Its main strength is that helps relevant documents to be placed higher in the ranking
even if they do not literally contain the initial query terms. For instance, if the query
“Acropolis” is expanded by adding the terms “parthenon” and/or “Athens” and/or “Greece”
and or “Ancient Greece”, this new query does not only retrieve the documents that contain
the original term (Acropolis) but also documents that use relevant and similar words as well
as documents that do not directly contain it.

The most common data sources for generating new terms include: (i) large-scale external
corpora that can be considered to reflect the overall term distribution in a given language,
such as Wikipedia titles and/or articles in a given language (Balog et al., 2008) or even query
logs (Wang and Zhai, 2008) (ii) the document collection being searched in the current
setting (Xu and Croft, 1996) that can be viewed as modelling term distribution in a particular
domain, and (iii) documents relevant to the submitted query which are identified either
interactively by the user or automatically by the system; in the former case, i.e., in a so-

Page 36

4D D2.2-V1.1

called relevance feedback cycle, the user pro-actively provides guidance in the form or
relevant reference documents (Efthimiadis, 2000), while in the latter case, referred to as
pseudo-relevance feedback, the top retrieved documents are assumed to be relevant (Xu
and Croft, 1996). Query expansion using multiple data sources has been shown to generate
complementary results and hence has the potential to further increase the search
effectiveness. Nevertheless, its usage must be cautious as adding erroneous expansion terms
to the query may degrade its performance.

Query substitution aims to completely change a user’s original search query and introduce a
new, superior one in terms of retrieval performance (Jones et al., 2006). It shares similarities
with the query expansion since the first step involves the query expansion process. However,
instead of using the produced terms to expand the original query by simply adding them,
query substitution totally changes it by replacing the original query terms with the
automatically extracted ones. Similarly to query expansion, the original query can be
transformed either by the search system (Craswell et al., 2013) and/or with the help of the
end users (Belkin et al., 2001).

Query reduction is the process of removing one or more terms from the original query which
leads to the creation of one or more subqueries that aim to increase search efficiency, by
dropping, for instance, too specific, unnecessary or ambiguous terms. As search engines
often rank documents in response to queries based on weak conjunctions or multiplicative
combinations of query terms (Belkin et al., 2001), documents containing such specific,
unnecessary or ambiguous terms may end up being highly ranked and as result cause topic
drift. Query reduction helps to support documents containing the most essential query
terms, particularly in the context of queries that spread to a large number of words, and at
the same time to reduce the retrieval score of documents that contain terms that are liable
to cause topic drift.

In some occasions, the union of the retrieval results of the original query with the results of
the transformed query/queries, by applying one or more types of transformations
(expansion, substitution, reduction), is considered (Balog et al., 2008). Retrieving optimal
results by taking into account only the transformed versions of a query is a challenging task
as these versions have to perfectly capture the informational need. To tackle with this
challenge, user interactions can be employed as a way for selecting the best query
transformations (Kumaran and Allan, 2008).

Since most of the queries defined for searching for web resources are short (their length is
less than 5 words), we are mostly interested in expanding the query to discover terms that
are initially omitted by the user as self-evident ones. The query expansion method we
implemented involves the usage of neural word embeddings which are detailed in the next
subsection.

6.1 Neural Word Embeddings

Word embeddings are a popular type of word representation that encodes words in a
specified vocabulary as low-dimensional vectors. Neural word embeddings are word
embeddings that are trained using deep learning neural networks.

The most well-known neural word embedding models are word2vec (Mikolov et al., 2013)
and Global Vector for Word Representation (GloVe) (Pennington et al., 2014). In word2vec,

Page 37

4D D2.2-V1.1

two different architectures are proposed, namely Continuous Bag-of-Words (CBOW) and
Skip-gram. Both are trained by taking into account the words being in a small distance in a
sentence. The distance considered is configured by a parameter whose name is window size.
In CBOW, the vector of a word is predicted by the context i.e. the surrounding words,
whereas in the Skip-gram model the exact opposite function is applied, that is given a word
its context is predicted. In GloVe, a different approach is proposed where training of the
word vectors is made by leveraging co-occurrence statistic of pairs of words given a corpus.
Both word2vec and GloVe aim to model the embeddings in a manner that semantically
similar words have vectors that are close to each other.

6.2 Implementation

For V4Design, apart from submitting the initial queries provided by the user partners, which
falls to the manual query formulation scenario, we also developed a mechanism for
extending the query with more relevant terms. As the query expansion mechanism is
automatic (while the initial definition still remains manual), the implemented formulation
approach is considered semi-automatic.

The initial version of the query expansion module makes use of pre-trained word vectors
that were trained on large corpora. Such vectors are trained on loads of text that address
numerous different topics and hence they are suitable for reformulating the queries we are
interested in. As they cover a broad context, they are named as universal embeddings.

A popular published set of pre-trained word embeddings is published by Mikolov et al.
(Mikolov et al., 2013), as part of their work on word2vec. They were trained on part of the
Google (English) News dataset, a rather large corpus that contains approximately 100 billion
words. The model file provides 300-dimensional vectors for 3 million words and phrases.

Moreover, Pennington et al. (Pennington et al., 2014), in the framework of the Glove model
introduction, provided a set of different pre-trained word embeddings. This set includes
embeddings of many different dimensionalities that were trained on Wikipedia and
Gigaword articles®®, Twitter posts, and the Common Craw! dataset®’. Table 2 shows some
useful information about these datasets.

Table 2: Word embedding pre-trained models

Corpus Tokens Vocabulary Capitalization | Dimensions
Words

Wikipedia 2014 + | 6 billion 400 thousand No {50,100,200,300}

Gigaword 5

Common Crawl 42 billion 1.9 million No 300

Common Crawl 840 billion 2.2 million Yes 300

Twitter 2 billion 1.2 million No {25,50,100,200}

2 https://catalog.ldc.upenn.edu/LDC2011T07

* http://commoncrawl.org/

Page 38

4D

D2.2-V1.1

To extract the most relevant terms to a query, we make use of the built-in method of the
gensim>® python library that calculates the cosine similarity of the query with each one of
the vocabulary terms. From the terms list of each model, the ones that do not belong to the
NLTK>** Python library English words list and the ones that are considered by NLTK as English
stopwords are not considered as candidates for the expansion process. Also, we made use of
only the models that have vectors with dimensionality higher or equal than 200 because we
expect that the quality of vectors is downgraded should we keep few dimensions. The top-5
ranked terms for each model and for indicative queries that are relevant to the project’s use
cases are presented in Table 3.

Table 3: Top-5 relevant terms to search queries proposed by word embedding models

Query GloVe Google
6B.200d 6B.300d 42B.300d 840B.300d twitter.27B.200d News
Eiffel Tower skyscraper skyscraper louvre skyscraper paris skyscraper
spire spire paris Louvre bridge Gothic
building building building Paris square beefeater
facade facade skyscraper Basilica hotel campanile
staircase edifice bridge Manhattan building brutalist
Acropolis parthenon parthenon | parthenon Parthenon athens Parthenon
athens athens athens Athens parthenon Colosseum
colosseum marbles agora Colosseum rally Panathenaic
capitoline colosseum syntagma Athenian syntagma Lycian
agora monument athenian Louvre hermitage Athens
Brandenburg saxony entrance berlin Brandenburger bridge Oldenburg
Gate entrance saxony entrance Saxony station Saxony
sluice castle palace Vienna berlin Werner
rhine berlin bridge Waterloo airport Hohenzollern
berlin gateway park Hohenzollern rail Wolf
Notre Dame villanova villanova villanova Villanova alabama hiver
hunchback auburn auburn Duke salle Marie
seton hunchback football Ole football salle
auburn seton duke Football nous elle
mater mater university Wesleyan duke ecole
Colosseum rome crucifixion pantheon Coliseum sphinx piazza
crucifixion rome coliseum Basilica rome cathedral
procession basilica rome Flavian pantheon Pompeii
basilica obelisk basilica Pompeii ballroom Rome
amphitheater | procession piazza Rome belvedere tomb

From this Table we can observe that the embedding models are capable of detecting
relevant terms. For example, the location of the Acropolis and Colosseum monuments is
detected in all the models. For Eiffel Tower and Brandenburg Gate, their location is properly
retrieved in at least some of the embedding models. Additionally, more relevant terms are
accurately proposed such as “Parthenon” for the “Acropolis” query, and “Coliseum” as a

% https://radimrehurek.com/gensim/index.html

*! http://www.nltk.org/

Page 39

4D D2.2-V1.1

different formulation of “Colosseum”. However, there are also a lot of noise terms in the
top-ranked results, especially in the Notre Dame query where the topic of the query is
completely deviated from what is expected by the proposed terms. Instead of fetching terms
relevant to the famous cathedral, the models tend to provide noise terms e.g. the
“Villanova” one that refers to an academy carrying the Notre Dame name. Therefore, the
claim that the expansion models should be used with caution is more than valid. In the
updated version of the query expansion module, such issues will be addressed so as to
improve the effectiveness of the models in proposing relevant terms and accordingly in
improving the final search results of the query.

Page 40

4D D2.2-V1.1

7 DATA MODEL

7.1 The SIMMO data model

This section presents the proposed framework for the unified representation of Socially
Interconnected MultiMedia-enriched Objects (SIMMO) available in web environments
(Tsikrika et al., 2015). While similar entities are also encountered, at least in part, in other
models (e.g., (S.-F Chang et al, 2001), (Daras et al. 2011), (Bojars et al., 2008)) that have also
formed part of our inspiration it is the interconnections among SIMMO elements and the
novel approach of bridging the gap between multimedia and social features that make
SIMMO unique in its ability to support a wide range of applications. Figure 5 presents the
conceptual model of SIMMO with the following core entities and their sub-classes:

Affiliation

Interaction

*1 UserAccount
"

Similarity

Reference

Mention

| Image | | Audio | I Video | lWebpage

Figure 5: SIMMO conceptual model presenting its elements and their relations. For
simplicity, association relations that have attributes are depicted as simple associations.

— Object is a generic entity representing media content ranging from monomodal Items to
multimedia Documents. Each Item represents the actual media content consisting of a single
modality, such as Text, Image, Video, or Audio, whereas Documents may be viewed as
container objects consisting of potentially multiple such Items, and thus modalities. The
most common instantiations of Web Documents are Webpages (e.g., pages in news sites, in
entertainment portals, etc.) or Posts in media sharing platforms with social characteristics
(e.g., Facebook posts, tweets, etc.). There are also cases of Webpages consisting of Posts; a
forum page, for instance, can be viewed as a container object consisting of posts on the
same topic. The Media entity is introduced as an abstraction of Image, Video, and Audio so
as to represent their common characteristics, such as the fact that they all may be
associated with a Text item modelling the text associated with them (e.g., a caption) or
extracted from them through e.g., ASR (Automatic Speech Recognition) for Video and Audio,
and OCR (Optical Character Recognition) for Image and Video. Finally, further media (e.g., 3D
objects) may be added as Item instantiations depending on the requirements of the
particular application.

Page 41

4D D2.2-V1.1

— Source is a generic entity representing media content contributors. This includes
UserAccounts representing users generating content, mainly posts in social media sharing
platforms where they hold accounts, and WebDomains representing the Web sites hosting
media content generated by their contributors. WebDomains are viewed as content
contributors, even though they do not correspond to the actual person who contributed the
content, given that in many cases the information regarding such people may not be
available, or may be of much lesser importance in this specific context.

— Segment locates the media content of Items at a finer level of granularity (e.g., a passage
in text, a region in an image, or a portion of a video) by including positional information as
attributes. Instantiations of Segments (not depicted in Figure 5) include LinearSegments
(e.g., with start/end positions as attributes for referring to text parts), SpatialSegments (e.g.,
with (x, y) pairs as attributes for referring to image regions), TemporalSegments (e.g., with
start/end times as attributes for referring to video frames/shots/scenes), and
SpatioTemporalSegments. A SegmentGroup represents a collection of Segments; it is also
modelled as a sub-class of Segment, thus allowing it to contain both Segments and other
SegmentGroups.

— Collection models aggregates of Objects (i.e., higher levels of granularity), such as corpora
of Web documents, sets of tweets, and image collections.

— Annotation is a generic entity representing together with its sub-classes (not depicted in
Figure 5) a wide range of descriptions extracted from media content. These include
annotations typically extracted from text (e.g., keywords, named entities, summaries,
categories, etc.), media content features (e.g., low level descriptors, concepts and events),
affective descriptions (e.g., sentiment and polarity), veracity scores reflecting the reliability
of information and thus the trust that should be placed on it, and many others.

— Topic refers to any subject of interest in the context of information processing, analysis, or
access applications that users would like to keep track of. Its explicit representation allows
supporting a broad range of tasks, such as information filtering, topic tracking, and
classification. The main relations between these SIMMO elements, excluding the already
discussed generalisation and aggregation/composition relations, are:

* The generation of media objects is modelled through a Contribution association
between Source and Object.

* Explicit relations between Documents are modelled as Reference associations, with
attributes such as the type of the relation. By considering that a Document may
Reference another Document, we also consider (through inheritance) that a
Webpage may Reference another Webpage (e.g., link to it) and a Post may Reference
another Post (e.g., reply to it or comment on it). We consider that this association is
also able to model the References to Webpages from Posts (e.g., the Web links
embedded in tweets) and to Posts from Webpages (e.g., to the comments
dynamically posted on a Webpage).

* Objects may also be implicitly related to other Objects, e.g., through a computation
of their similarity. Such Similarity relations are modelled as recursive associations
between Objects, with attributes such as the type of the relation and the similarity
score. This is useful in several applications and tasks, including clustering and
verification of content provenance.

Page 42

4D D2.2-V1.1

* A User Account may be involved in several relations, e.g., (i) be mentioned in a Post,
(ii) be affiliated with (be friends with, follow etc.) another UserAccount, or (iii)
interact with an Object (through likes, shares, views, etc.); the latter is more common
for Posts, but users also interact with (e.g., like) whole Webpages. These three
relations are modelled through the Mention, Affiliation, and Interaction associations,
respectively, with attributes, such as the type of relation and the date it was
established. Commenting is not modelled as a relation between Documents and
UserAccounts, but rather as a Reference between two Documents (e.g., two Posts).

* All types of entities (i.e., Objects, Segments, Collections, Sources, and Topics) and
their sub-classes may be associated with Annotations that are used for describing
them. Such Description relations represent, for instance, the annotation of an Image
with the SIFT features extracted from it, a TemporalSegment of a Video (such as a
shot) with Concepts, or a UserAccount with Keywords reflecting the users’ profile.
Furthermore, links between different annotations (e.g., low-level descriptors and the
concepts obtained from them) are modelled through the reflexive relation Origin
between Annotations to denote the provenance of one with respect to the other.

* Each Topic is associated with a Collection of Objects on the particular subject of
interest and may also be annotated itself. For instance, the Topic “Tour de France
2014” bicycle race would be associated with a Collection of Documents, such as
Webpages and tweets on the subject, and could be annotated with the concepts
“cycling” and “yellow vyersey”, the entity “Union Cycliste Internationale”, and
extracted locations, such as “Grenoble, France”.

SIMMO elements and their relations also have several attributes representing their
properties. For example, each Object is associated with a URI, creation date, and crawl date.
Text is described by its format (e.g., HTML), an Image by its size, EXIF data, and associated
thumbnail, a Video by its duration, number of frames, and associated thumbnail, and an
Audio by its duration. Documents also have attributes related to the statistics regarding their
social interactions, e.g., numbers of likes, comments, views, etc. The properties of a
UserAccount include a stream ID denoting the platform hosting the account, the user’s
name, and the number of followers/following/friends.

Implementation: We have implemented the SIMMO framework in Java 1.7. We used Maven
for controlling the project’s build process, unit testing, and documentation creation, and the
Google GSON library for converting Java objects into their JSON representation. This does by
no means constrain the user from choosing another JSON library or another serialisation
method. The SIMMO framework is open-source, released under the Apache License v2, and
available at: https://github.com/MKLab-ITl/simmo.

7.2 Adaptations

The SIMMO model can cover a wide range of data representation requirements, however,
there are a lot entities and metadata that have to be stored for this project and cannot be
mapped using the published SIMMO version. Therefore, adjustments had to be made to the
model in order to keep a unified way of storing and managing the crawled data. The only
alternative option was to employ different data models for the content that could not fit into
the SIMMO model, nevertheless such an action would complicate the entire system

Page 43

4D D2.2-V1.1

architecture as the components connected to the crawling module would have to deal with
diverse data that are stored in completely different formats.

In the current version of the modified SIMMO model, three new entities have been
introduced as dedicated JAVA classes. The first one covers PDF document files as a special
case of Document objects. In the original SIMMO model, the only Document instances are
either “Webpage” or “Post” (social media posts). Neither of these two entities could include
PDF files, so a dedicated one is created for this purpose. Another entity that was created is a
subclass of the “Annotation” class and its usage is to hold metadata annotations, in form of
key-value pairs. The last entity was created in order to be able to link multimedia items to
their originating resources. For example if we retrieved a video that belongs to a specific
webpage, we have to capture a webpage identifier in the video representation in order to
access the object containing that multimedia item. That would significantly help in cases
when we wish to directly retrieve videos, without having to go through the webpage list
first. To this end, we created a “Parent” class containing an identifier and the type of the
resource associated with this identifier.

Apart from creating new entities, new fields have been added to the already existing
entities. For all SIMMOs, the license, an alternative URL address and a list of comments can
be stored. Alternative URLs are mainly added to include links to the data storage module.
For each “lItem” entity, a list of the newly defined “Parent” objects is added to specify the
originating resources. Additionally, changes have be made to the multimedia object entities.
More specifically, in image objects an additional URL address can be stored to retrieve their
thumbnails and in video objects, saving the video format and the bit rate is now supported.

Last, new behaviors are integrated into the “Document” instances that return if they contain
texts, images or videos. These functions support the enrichment of the messages sent to the
Message Bus with information that help the other components of the preprocessing pipeline
determine if they should process a collected document. For example, the Aesthetics
Extraction module (T3.5) cannot process documents containing only text, so it should focus
on documents that include at least an image or a video. The enhancements made to the
SIMMO model are summarized in Tables 4, 5, and 6.

Table 4: New SIMMO entities

Entity Subclass of Description

PDF Document A PDF file representation

Metadata Annotation Key-value pairs of metadata annotations
Parent - The document an item is originating from

Page 44

4D

D2.2-V1.1

Table 5: New SIMMO fields
Field Entity (Class) JAVA Type Description
License Object String The license of the stored resource.
alternativeUrl Object String An alternative address to retrieve the
resource.
comments Object Set<String> A list of comments that have been
made for the resource.
Parents Iltem List<Parent> The originating resources.
alternativeThumbnail | Image String An alternative URL for the thumbnail
of an image.
Format Video String The video format.
Bitrate Video String The bitrate of the video.
Table 6: New SIMMO behaviour
Behavior Entity (Class) Return type Description
(Function name)
hasText() Document Boolean Returns True if a Document has “Text”
items.
hasimage() Document Boolean Returns True if a Document has “Image”
items.
hasVideo() Document Boolean Returns True if a Document has “Video”
items.

Page 45

4D D2.2-V1.1

8 DATASETS CREATED

In this section we present the datasets created using the V4Design Crawler application. The
collected resources address the data collection needs defined from the start of the project
until this reporting period.

8.1 Wikipedia dataset

The Wikipedia website is the largest and most popular multilingual online encyclopaedia in
the World Wide Web. The English version contains almost 6 million articles, while in total the
entire website has more than 40 million articles in 301 different languages. All the content
published there is free and the website covers a wide range of topics, so it is more than
appropriate for our data collection tasks. It encompasses both textual content that can be
used by the V4Design text analysis tasks such as the concept extraction and visual content
that is important for tasks like spatio-temporal object and building localization and 3D
reconstruction.

A suitable topic that fits most of the V4Design tasks is “castles”. Consequently, we scraped
and added 311 Wikipedia Web pages that described a castle in this dataset. The collected
text comprised of the main content of the webpage as well as metadata placed in the
infobox that exists at the majority of the Wikipedia pages. Images existing in the
webpages are also collected along with their captions. Apart from these 311 webpages that
were related to castles, we enriched this dataset with three more webpages that were
relevant to a different topic. The reason was that we needed to scrape and test resources
that were addressing PUC4 (Design of virtual environments, related to actual news for VR
reliving the date). Each one of these 314 resources contained one textual instance and zero,
one or many visual instances. The total number of visual instances in this dataset is 661, all
of them being images. An example page that was crawled is the Gendarmenmarkt, which
describes one of the main squares in Berlin. An image existing in this Wikipedia page is
depicted in Figure 6.

Figure 6: 2008 Panorama of the Gendarmenmarkt

8.2 Deutsche Welle Nico’s Weg exercises dataset

“Nico’s Weg” is an online German course provided by Deutsche Welle in the form of a
telenovela that is available as a web and a mobile application. It integrates video footage as
well as textual content and interactive exercises to practice and improve German language
skills in many different levels. The V4Design crawler was used to crawl and scrape the textual
content from the domain of the courses that target beginners learning the Al level of the

Page 46

4D D2.2-V1.1

language. Pages presenting grammar, vocabulary and culture/society details were
scraped and integrated into this dataset. An example of such webpage is the one that
explains the usage of the pronoun ‘es’ and its extracted content is shown in Figure 7. In total,
440 webpages are scraped for this dataset.

Grammar
Pronouns: es

es used as a personal pronoun
The pronoun es is usually used to replace a neuter noun:
Wo ist das Buch? — Es ist in der Tasche. (es = das Buch)

es as the formal subject with impersonal verbs

There are other functions that es can have. Sometimes es does not stand in for a definite
noun but takes the role of the subject without having a meaning of its own. This
construction is often used in impersonal phrases in which there is no other subject.

Examples of this are sentences or clauses that describe weather phenomena:

Es regnet.

Es schneit.

Es ist sonnig.
Es ist bewdlkt.
Es ist neblig.

Here, es stands for a situation or state to which no concrete subject can be attributed.

Figure 7: Scraped text from https://learngerman.dw.com/en/pronouns-es/|-37653197/gr-
38306282

8.3 Twitter dataset

For addressing the social media content extraction needs, we used the implemented
infrastructure to collect textual content from Twitter posts in order to support the text
analysis tasks. For this dataset, the main topic considered is Cultural Heritage, so we
targeted on tweets published by a specific set of users. The social media search module was
applied on 21 selected relevant users which included: a) Twitter bots that continuously
tweet out objects from digital archives like the Metropolitan Museum, b) official Twitter
accounts of Cultural Heritage institutions, c) other accounts related to Cultural Heritage not
falling into the previous two categories. The final outcome consists of texts from about 40
thousand tweets. All contents are stored in MongoDB and they were delivered in JSON
format. A typical instance of such Twitter post s located at

Page 47

4D D2.2-V1.1

https://twitter.com/MuseumBot/status/892811000994557953. That post was published
from a bot tweeting images from the Metropolitan Museum of Art.

8.4 Flickr dataset

Data collection for the Flick website was done in two different phases. In the first phase,
when an initial implementation of the Flickr search mechanism was complete, we opted to
search and collect images from famous building as well as cars. We formulated 13 queries
and collected a total of 6209 images. Example queries are the Eiffel tower, the Delphi temple
and the Volkswagen Beetle. This collection was made to evaluate the suitability of the image
content for the 3D reconstruction tasks, thus a small set of metadata was stored there.

However, to address the rest of the project tasks we updated the Flickr search module in the
second phase to capture all the required fields that are provided by the platform.
Additionally, based on the user’s input we enhanced the query set. 137 queries were defined
that were relevant to well-known buildings all around the world. The resulting new dataset
consists of 53740 images stored in the SIMMO format. In all the queries for both phases, we
set a maximum results limit per query to 1000 and we searched only images that are freely
available for reusing and repurposing by setting a filter on the licenses list that are available
on Flickr. An example picture returned from the “Hagia Sophia” query along with the stored
SIMMO record (its most important fields) in the database in shown in the Figures 8 and 9.

Figure 8: Picture in the Flickr website showing the Hagia Sophia church

Page 48

4D D2.2-V1.1

{
" id" : "64ce2353-c8ee-4466-994a-58e87ee76c37",
"thumbnail" : "https://farm1.staticflickr.com/148/358429847 3c82e8630e_t.jpg",
"exif" : {
"ExifVersion" : "0221",
"LightSource" : "Unknown"
5
"location" : {
"coordinates" : [41.0061645507813, 28.9773979187012],
"radius" : 0.0, "inferred" : false
5

"webPageUrl" : "https://flickr.com/photos/97189870@N00/358429847",
"source" : "Flickr",

"url" : "https://farm1.staticflickr.com/148/358429847 3c82e8630e_o.jpg",

"title" : "Hagia Sophia (2006-10-087)",

"description" : "Hagia Sophia, (the Church of) Holy Wisdom, now known as the
Ayasofya Museum, is a former Eastern Orthodox church converted to a mosque in 1453
by the Turks, and converted into a museum in 1935. It is located in Istanbul, Turkey. It is
traditionally considered one of the great buildings in history. Its conquest by the
Ottomans at the fall of Constantinople is considered one of the great tragedies of
Christianity by the Greek Orthodox faithful.",

"tags" : ["turkey", "istanbul", "architecture"],

"searchQuery" : "Hagia Sophia"

}

Figure 9: A SIMMO record associating to a Flickr search result

Page 49

4D D2.2-V1.1

9 DEMONSTRATOR

For visualizing and evaluating the data collection results, a website was created that showed
the collected textual and visual content of the discovered resources through an easy-to-use
user interface. The home page is illustrated in Figure 10. The user can go through three
options: a) see the textual content of a scraped webpage, b) see all the scraped images for
the Wikipedia dataset, along with their captions and c) see the returned images from a Flickr
guery. Examples for each one of these three cases are shown in Figures 11,12 and Figure 13.

i Information
“- V4Design ITI Web App Liome ﬁi Technologies

Institute

Welcome to Scraping Demo

Select one of the following scraped URLs to show textual content:

http://en.wikipedia.org/wiki/Castle_of_Redondo 2
Or click below to view scraped images:
Or search the images collected from Flickr:
Flickr query: ~ eiffel tower ©

V4D ITI Web App developed @ ITI / CERTH
Contact: spyridons@iti.gr

Figure 10: V4Design Crawler demo

Information
A v4esion M web App o m Technologies

Institute

Scraped content overview

Selected URL:

http://en.wikipedia.org/wiki/Castle_of_Alcanede

Metadata:
Field Value
Operator Fundagao da Casa de Braganca
Type Castle
Owner Portuguese Republic
Built 14th Century
Coordinates 38°46'48.98"N 7°24'54.25"W / 38.7802722°N 7.4150694°W / 38.7802722; -7.4150694Coordinates: 38°46'48.98"N 7°24'54.25"W /

38.7802722°N 7.4150694°W / 38.7802722; -7.4150694

Open to the Public

V4D ITI Web App developed @ ITI / CERTH
Contact: spyridons@iti.gr

Figure 11: Scraped metadata of a Wikipedia page

Page 50

4D D2.2-V1.1

Information

A vé0esion mweb App Home ﬁb Technologies
Institute

URL 1/ Source webpage Caption

https://en.wikipedia.org/wiki/Delphi The Delphic Tholos, seen from above.

https://en.wikipedia.org/wiki/Delphi Ruins of the ancient Temple of Apollo at Delphi,
overlooking the valley of Phocis.

https://en.wikipedia.org/wiki/Delphi The gymnasium

https://en.wikipedia.org/wiki/Delphi View of the Athenian Treasury; the Stoa of the Athenians
on the Right.

V4D [Tl Web App developed @ ITI / CERTH
Contact: spyridons@iti.gr

Figure 12: Images from the Delphi Wikipedia page

Information
QAP v4vesion i web App Home ﬁ} Tecnloges
stitute

Back to Demo

Flickr images

Total images: 999

V4D ITI Web App developed @ ITI / CERTH
Contact: spyridons@iti.gr

Figure 13: Flickr search results for the “Brandenburg Date” query

Both the demonstrator and the included data were evaluated by the user partners. Their
general impression was that the purpose of the application becomes clear very quickly and
the main functions can be learned with ease. The collected data were assessed as relevant to
the project, however, it was not fully clear, how the results are going to be used. That can be
attributed to the application being a demonstrator of the V4Design Crawler which produces
raw data as output. These raw data themselves cannot comprise meaningful information for
the end users without being processed by the rest of the technical components of the
V4Design platform.

Page 51

4D D2.2-V1.1

10 CONCLUSIONS AND NEXT STEPS

In this deliverable, we have presented the initial version of methods that we have developed
for the V4Design Crawler, an application that integrates and connects a set of different
modules such as the content scraping module, and the query expansion module. The goal
for which V4Design Crawler was developed for the project is to collect useful multimedia
content that can be then processed by the WP3 and WP4 modules. It is the first step of a
pre-processing pipeline that generates content to be utilized by the VR authoring tool and
the Rhino plugin (WP6). In addition, the current deliverable has documented the conceptual
architecture of the domain-specific query formulation and the query formulation based on
user interaction.

Also, we achieved to develop an innovative application that integrates a variety of web data
collection functionalities from heterogeneous resources, in contrast with other applications
in the market that focus only on one aspect of data collection e.g. web crawling and
scraping. Apart from that, to our knowledge no software exists that integrates the
functionality of automatically adding more terms to a user search query with the purpose of
helping the search engines produce more appropriate results. Finally, we expanded an
existing data representation model, the SIMMO one that has been successfully used in
previous projects, to support more informational needs and fulfil the additional data storage
requirements that emerged specifically in this project.

We also present the datasets created using the V4Design Crawler application. The collected
resources address the data collection needs defined from the start of the project until this
reporting period. The sources leveraged pertain to Wikipedia, DW Nico’s Weg, Flickr,
Twitter. For visualizing and evaluating the data collection results, a website was created that
showed the collected textual and visual content of the discovered resources through an
easy-to-use user interface. The relevance of the results for the project’s purposes was
confirmed, but it was still difficult to understand how they are used due to the rawness of
the output.

As regards our future plans to expand and enrich the current version of developed modules,
these are outlined in the following paragraphs.

As for the content scraping module, we plan to update the scraping process to extract more
multimedia information. Furthermore, the updated scraping module will be more flexible as
an approach that will be identical for all the web domains is going to be implemented.

As future plans for the query expansion are concerned, we plan to introduce more advanced
techniques that will better exploit word embedding models to refine the query and, as a
result, improve the web and social media searching outcome. More word embedding models
will be created and tested for their suitability in the project’s searching needs.

Furthermore, we are going to reconsider the data collection needs with the aim of extending
the V4D Crawler with more web and social media searching functionalities (e.g. by
integrating more APlIs into the tool).

Last but not least, we are going to use the current version of the V4Design Crawler (and its
extensions) to collect more data relevant to the project’s requirements and thus, introduce
additional enriched datasets.

Page 52

4D D2.2-V1.1

REFERENCES

Balog, K., Weerkamp, W., & De Rijke, M. (2008, July). A few examples go a long way:
constructing query models from elaborate query formulations. In Proceedings of the 31st
annual international ACM SIGIR conference on Research and development in information
retrieval (pp. 371-378). ACM.

Belkin, N. J., Cool, C., Kelly, D., Lin, S. J., Park, S. Y., Perez-Carballo, J., & Sikora, C. (2001).
Iterative exploration, design and evaluation of support for query reformulation in interactive
information retrieval. Information Processing & Management, 37(3), 403-434.

Bojars, U., Breslin, J. G., Peristeras, V., Tummarello, G., & Decker, S. (2008). Interlinking the
social web with semantics. IEEE Intelligent Systems, 23(3), 29-40.

Carpineto, C., & Romano, G. (2012). A survey of automatic query expansion in information
retrieval. ACM Computing Surveys (CSUR), 44(1), 1.

Chang, S. F., Sikora, T., & Purl, A. (2001). Overview of the MPEG-7 standard. IEEE
Transactions on circuits and systems for video technology, 11(6), 688-695.

Craswell, N., Billerbeck, B., Fetterly, D., & Najork, M. (2013, February). Robust query
rewriting using anchor data. In Proceedings of the sixth ACM international conference on
Web search and data mining (pp. 335-344). ACM.

Daras, P., Axenopoulos, A., Darlagiannis, V., Tzovaras, D., Le Bourdon, X., Joyeux, L., &
Camurri, A. (2011). Introducing a unified framework for content object description.
International Journal of Multimedia Intelligence and Security, 2(3-4), 351-375.

Efthimiadis, E. N. (2000). Interactive query expansion: A user-based evaluation in a relevance
feedback environment. Journal of the Association for Information Science and Technology,
51(11), 989-1003.

Jones, R., Rey, B., Madani, O., & Greiner, W. (2006, May). Generating query substitutions. In
Proceedings of the 15th international conference on World Wide Web (pp. 387-396). ACM.

Mikolov, T., Sutskever, |., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems (pp. 3111-3119).

Olston, C., & Najork, M. (2010). Web crawling. Foundations and Trends® in Information
Retrieval, 4(3), 175-246.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (pp. 1532-1543).

Tsikrika, T., Andreadou, K., Moumtzidou, A., Schinas, E., Papadopoulos, S., Vrochidis, S., &
Kompatsiaris, 1. (2015, January). A unified model for socially interconnected multimedia-
enriched objects. In International Conference on Multimedia Modeling (pp. 372-384).
Springer, Cham.

Wang, X., & Zhai, C. (2008, October). Mining term association patterns from search logs for
effective query reformulation. In Proceedings of the 17th ACM conference on Information
and knowledge management (pp. 479-488). ACM.

Page 53

4D D2.2-V1.1

Xu, J., & Croft, W. B. (1996, August). Query expansion using local and global document
analysis. In Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval (pp. 4-11). ACM.

Page 54

