

 Page 1

V4Design
Visual and textual content re-purposing FOR(4) architecture, Design and virtual

reality games - H2020-779962

D6.4 - 1st prototype and applications for
architecture and video game design

platforms

Dissemination level: Public

Contractual date of delivery: Month 18, 30 June 2019

Actual date of delivery: Month 19, 05 July 2019

Work package: WP6 System integration and tool development for content
re-purposing

Task: T6.2: Development of VR and 3D game authoring tool

T6.3: Tool development for architects and designers

T6.4: System integration

Type: Demonstrator

Approval Status: Final

Version: 1.0

Number of pages: 53

Filename: D6.4-V4Design_first_prototype_v1.0

Abstract

This deliverable documents the first prototype of the V4Design platform, i.e. the first version of
the implementation of the front-end applications for the architecture and video game design
platforms that will be considered in V4Design, as well as the backend development, which will
deal with the personalisation of the applications and their support.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may
be made of the information contained therein. The information in this document is provided as is and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

 Page 2

co-funded by the European Union

History

Version Date Reason Revised by

V0.1 14/05/2019 ToC and First inputs Yash Shekhawat (NURO)

Ayman Moghnieh (McNeel)

V0.4 10/06/2019 main chapters developed, input from
partners solicited

Yash Shekhawat (NURO)

Ayman Moghnieh (McNeel)

V0.8 20/06/2019 Partners’ contributions integrated Yash Shekhawat (NURO)

Ayman Moghnieh (McNeel)

V0.9 26/06/2019 Version ready for internal review Yash Shekhawat (NURO)

Ayman Moghnieh (McNeel)

v1.0 05/07/2019 Internal review comments addressed
and final version is ready

Yash Shekhawat (NURO)

Author list

Organization Name Contact Information

McNeel Ayman Moghnieh aymanmoghnieh@gmail.com

McNeel Luis Fraguada luis@mcneel.com

McNeel Verena Vogler verena@mcneel.com

CERTH Konstantinos Avgerinakis koafgeri@iti.gr

CERTH George Meditskos gmeditsk@iti.gr

CERTH Elissavet Batziou batziou.el@iti.gr

NURO Yash Shekhawat yash.shekhawat@nurogames.com

NURO Christian Mueller christian.mueller@nurogames.com

UPF Simon Mille simon.mille@upf.edu

UPF Jens Grivolla jens.grivolla@upf.edu

KUL Jens Derdaele jens.derdaele@kuleuven.be

 D6.4 – V1.0

Page 4

ABBREVIATIONS AND ACRONYMS
3DR 3D Reconstruction

AE Aesthetics Extraction

AMQP Advanced Message Queuing Protocol

API Application program interface

CR Crawler / Wrapper

DB Database

DoS Denial Of Service

DSRS Data Storage and Retrieval System

GUI Graphic User Interface

HLURs High-level user requirements

JMS Java Message Service

JSON JavaScript Object Notation

KB Knowledge Base

LG Language Generation

OL Object Localization

RDF Resource Description Framework

SQL Structured Query Language

SR Scene Recognition

STBOL Spatio-temporal building and object localization

TA Text Analysis

TE Texture Extraction

TRs Technical Requirements

UIMA Unstructured Information Management Architecture

URI Unique Resource Identifier

URs User Requirements

VR Virtual Reality

 D6.4 – V1.0

Page 5

LIST OF FIGURES
Figure 1 Original communication model of the functional prototype 10

Figure 2 Conceptual design of the current V1 architecture ... 11

Figure 3 Overview of the V4Design data storage and retrieval design 15

Figure 4 Overview of the currently deployed reconstruction service architecture 18

Figure 5 Example JSON-formatted message pushed to KB and message bus 19

Figure 6 Overview of future architecture with support for horizontal scaling 21

Figure 7 Frame extraction results (5 of 102) .. 22

Figure 8 Some models generated using the 1st prototype pipeline .. 22

Figure 9 The AE pipeline ... 22

Figure 10 Input images used for aesthetic extraction ... 23

Figure 11 Input image used for texture proposals ... 24

Figure 12 Output generated by aesthetic extraction ... 24

Figure 13 The semantic pipeline .. 25

Figure 14 Concept candidate detection ... 27

Figure 15 Word Sense Disambiguation .. 27

Figure 16 Entity linking ... 27

Figure 17 Surface-syntactic analysis... 28

Figure 18 Semantic analysis ... 28

Figure 19 Mapping to predicate-argument structure .. 29

Figure 20 Mapping to deep-syntactic structure (sentence structuring) 29

Figure 21 Mapping to surface-syntactic structure (introduction of functional elements and
fine-grained grammatical relations) ... 29

Figure 22 Linearization and introduction of punctuation signs ... 29

Figure 23 Resolution of morphological agreements .. 29

Figure 24 Surface form retrieval (output) .. 29

Figure 25 REST API - User functionalities ... 32

Figure 26 REST API - Asset functionalities .. 32

Figure 27 REST API - Other functionalities ... 32

Figure 28 Workflow of the Editor App ... 33

Figure 29 Workflow of VR Tool .. 33

Figure 30 Screenshots of the demo scenario ... 35

Figure 31 Authentication dialogue integrated ... 36

Figure 32 Authentication dialogue integrated ... 37

 D6.4 – V1.0

Page 6

Figure 33 Imported asset alongside the “asset details” dialogue ... 38

Figure 34 Manipulating assets in Grasshopper .. 39

LIST OF TABLES
Table 1 Main functionalities implemented .. 12

Table 2 Technical Limitations of the Architecture ... 13

Table 3 Services and Messages .. 14

Table 4 3D Reconstruction dependencies .. 20

Table 5 Messages by the 3D Reconstruction service ... 20

Table 6 Dependencies of Aesthetic Analysis Pipeline .. 23

Table 7 Communication for semantic pipeline .. 26

Table 8 Licensing and distribution of V4Design modules .. 52

 D6.4 – V1.0

Page 7

Executive Summary

This deliverable discusses the implementation of the V4Design V1 platform prototype, which
is preliminarily delivered at M18 of the project to conduct user evaluations, and closed by M20
when the third technical milestone of the project is reached.

The V1 platform implements the V4Design process, which is designed to reconstruct valuable
assets for game design and architecture applications from media resources extracted from
online repositories, social media, and other sources. It extends the functional prototype of the
platform, which was delivered at M12 as a proof of concept of the integration model that
standardizes and connects the platform services.

The components that make up the V1 platform are discussed, namely the middleware (the
platform API, messaging service, and data storage and retrieval system), its three pipelines
(3D Reconstruction, Semantics, and Aesthetics), and the authoring tools (architecture and
game design). Advances in the implementation of each of these components are discussed
and results shown.

In order to validate the V1 platform from a functional perspective, a battery of functional tests
have been conducted, processing 64 raw data items selected by the content providers. The
results show that the V4Design process has been correctly implemented, and indicate how
the implementation can be improved to streamline this process further and expand user
control over it.

The deliverable is concluded by summarizing the major achievements and discussing future
works, namely the actions contemplated for the next iteration of development under which
the second version of the platform will be developed.

 D6.4 – V1.0

Page 8

TABLE OF CONTENTS

1 INTRODUCTION ... 9

2 1ST PROTOTYPE ARCHITECTURE .. 10

 Moving from chained services to pipelines ... 10

 Characteristics of the current architecture model ... 14
2.2.1 The platform’s communication model .. 14
2.2.2 The platform’s data management model .. 14
2.2.3 Security management .. 15

3 THE PIPELINES .. 18

 The 3D Reconstruction Pipeline .. 18
3.1.1 Dependencies .. 19
3.1.2 Limitations ... 20
3.1.3 Examples of generated assets ... 21

 The Aesthetic Analysis Pipeline .. 22
3.2.1 Examples of generated assets ... 23
3.2.2 Capacity and performance .. 25

 The Semantic Pipeline .. 25
3.3.1 Internal architecture and interdependencies ... 26
3.3.2 Dependencies from other pipelines and interoperability ... 26
3.3.3 Examples of generated assets ... 26
3.3.4 Capacity and performance .. 30

4 FRONTEND MIDDLEWARE AND END-USER TOOLS ... 31

 The V4Design REST API (NURO) .. 31
4.1.1 Supported functionalities .. 31
4.1.2 Security concerns addressed ... 32
4.1.3 Aspects contemplated for the next iteration of development 32

 Virtual Reality Tool .. 33
4.2.1 Demonstration scenario for the Virtual Reality Tool ... 34
4.2.2 Description of the envisioned second version .. 35

 Architecture Design Tool (McNeel) ... 36
4.3.1 Demonstration scenario for the Authoring Tool ... 37
4.3.2 Description of the envisioned second version .. 39

5 FUNCTIONAL TESTING AND EVALUATION ... 40

 Data collection for the functional evaluation .. 40

 Procedure for the functional tests .. 40

 Results of functional tests .. 41

6 CONCLUSIONS .. 43

7 REFERENCES ... 44

APPENDIX A: CURATED DATA COLLECTION ... 45

APPENDIX B: INSTRUCTIONS FOR RUNNING THE V4DESIGN PIPELINES 48

APPENDIX C: SOURCE CODE AND DEMOS ... 52

 D6.4 – V1.0

Page 9

1 INTRODUCTION

The V4Design platform is designed to implement the process of finding and extracting assets
from media collections acquired from repositories and web sources, otherwise referred to as
the V4Design process in this document. In order to extract the assets, the platform has to
identify them, reconstruct models, extract textures and information on the aesthetics of each
identified element, and develop elaborate descriptions, among other tasks. The platform is
conceived for game designers and architects alike, providing intuitive interfacing and control
techniques for asset reconstruction. The streamlining of the V4Design process, including the
integration and chaining of different technological modules in a manner that does not bound
the flexibility inherent in this process.

At the first iteration of development of the V4Design platform, the conducted analysis on the
technical requirements and specifications of the technologies that the platform integrates and
the functions it is trying to support, has allowed to establish and implement a standardization
of the platform modules as interconnected services, and to create a communication model
capable of synchronizing the services under specific processes and sub-processes. This
prototypical integration was consequently evaluated and different inconsistencies regarding
the data flow and management paradigms, as well as precedence among services have been
identified.

In the second iteration, which is mainly documented in this deliverable, these inconsistencies
were largely addressed, leading to a more grounded arrangement of components geared to
the processing of data and the reconstruction of composite assets (3D models with textures,
descriptions, and rich metadata). On top of this arrangement, basic versions of the authoring
tools conceived for supporting the user interaction have been developed and integrated. This
version of the integrated platform has been deployed in the cloud, connecting a series of
servers, each housing one or more services. It is referred to as the V1 platform prototype.

Essentially, and as previously stated, the objectives of the V1 platform is to implement the
V4Design process, centering on data processing as a primary concern.

The V1 platform lifecycle is expected to last 4 to 6 months, from the moment it is first delivered
at M18. During this period (M18-22/24) it is primarily employed as a testing framework to
conduct functional tests on the data processing mechanisms implemented, and discover and
remedy shortcomings in terms of compatibility with the data input quality and types,
performance, error avoidance and error handling, among other technical concerns. Apart
from the functional tests intended, the V1 platform will allow user groups to access the assets
reconstructed from raw data, and evaluate their quality, usability, compatibility, added-value,
and other concerns. The upcoming development cycle will introduce solutions to the detected
aspects and analysed shortcomings. In addition, it will also gear the development efforts
towards providing more elaborate support for users, and the processes they are ought to
control through the authoring tools.

 D6.4 – V1.0

Page 10

2 1ST PROTOTYPE ARCHITECTURE

In the following chapter, the first prototype of the V4Design platform is described and
delimited from the experimental proof-of-concept developed in the previous iteration. The
construction of pipelines geared towards data processing is first discussed, then the
characteristics of the resulting platform model are detailed, namely the communication
model, the data management model, and the synchronization model.

 Moving from chained services to pipelines

In the previous development iteration, which lasted from the beginning of the project till M12,
a thorough analysis of technical requirements was conducted, and an architecture model
designed to facilitate the integration of the different components and modules that make up
the V4Design platform. In order to validate such a model (see Figure 1), a prototypical
integration was implemented by which prototypes of the envisioned services and components
were integrated into a single workflow. This workflow implements the generic process of
V4Design by which composed and valuable assets are extracted and reconstructed from
media acquired from different sources, including online crawling and online repositories. The
chaining among the components, which the communication and data exchange models
implement, was conceived in accordance with the high-level requirements of each
component. For instance, services that process raw data were directly connected to the
Crawler service that is responsible for acquiring and distributing new data. Also, services that
process more advanced or intermediary data objects were chained accordingly and launched
subsequently to the generation of this required intermediary data.

Figure 1 Original communication model of the functional prototype

In this iteration, which spans M12 to M18, the focus of development and integration activities
centred on addressing the platform as a data processing system, moving beyond chaining and
into data management and synchronization. Under this perspective, the integration model

 D6.4 – V1.0

Page 11

was revisited to align it better with low-level or more precise requirements, and some
alterations were introduced to the original model. By taking this data-processing viewpoint,
the architectural concerns of the V4Design platform centred on establishing the
aforementioned generic process of V4Design as a pipeline capable of driving raw data objects
through the transformation process that creates valuable assets for the architecture and
game-design industries.

Consequently, the platform back-end architecture was rebranded as an integration of three
specialized pipelines, one in charge of reconstructing 3D models and generating relevant
metadata, another in charge of the extraction of aesthetic information, including masks and
textures, and a third pipeline in charge of extracting semantic information and generation rich
descriptions. These pipelines abstract and integrate the V4Design services in larger back-end
components, and implement the V4Design processing cycle according to the following
diagram.

Figure 2 Conceptual design of the current V1 architecture

The envisioned cycle starts by a processing request sent by the authoring tool to the API. The
request details the information required to extract the relevant data to process, for instance
a URL and a media type (e.g. www.youtube.com/myvideo, webpage). The API translates the
request to the Crawler (CR) through the message bus, which crawls and extracts the relevant
data and stores it in the platform’s Data Storage and Retrieval System (DSRS), and then
announces the arrival of new data by a Data Available message (prototyped in V1, but will be
functional in V2). The message indicates the nature, type, and content of the data, encoded
in parameters such as “has_videos”, “has_images”, and “has_text”. If the data includes a
video, then the 3D Reconstruction pipeline works to extract a 3D model from the video. If it
includes a video and/or an image, the Aesthetic pipeline starts extracting masks and textures
from the data. If it contains text, the Semantic pipeline starts extracting the semantics and
conducting a relevant generation of descriptions. The output of each pipeline is stored back
in the DSRS, and consequently can be queried and retrieved through the API. It is worth
mentioning that the API keeps a buffer of available data in the DSRS for performance-related
concerns.

 D6.4 – V1.0

Page 12

The following table details the main functionalities implemented having direct impact on the
architecture and integration of the platform. Other important implemented functionalities
pertain to the development roadmaps of individual services and components, and are
discussed in their respective upcoming sections of this document.

Table 1 Main functionalities implemented

Functionality Description Related Requirements

API implements basic
authentication.

The API creates and maintains basic user
profiles, and supports authentication as a
basic security mechanism.

Personalizing the content,
supporting the management
of rights and permissions
(basic support).

API retrieves index of
existing data.

The API is able to retrieve for the tools an
index of available data by interfacing with
the DSRS.

Users are able to explore the
assets available in the
platform.

API queries for DSRS. The API sends queries to retrieve assets
based on different criteria, include tags
and dates.

Users are able to search for
assets relevant to their
projects.

API sends a request
for crawling.

The API sends a request message to the
Crawler to retrieve raw data from a
source.

Users can retrieve assets
from interesting media they
discover online.

Crawler enables re-
processing of existing
assets.

Upon receiving the related request, the
Crawler can re-broadcast a Data Available
message to trigger re-processing.

Facilitates the use of the
current integrated platform
as a testbed for
improvements in different
services.

DSRS stores objects
according to their type
and role in the
process.

DSRS currently wraps three distinct
storage mechanisms, one for raw data,
one for metadata and analytical
intelligence, and another for 3D models.

Flexibility and performance
in data management are key
concerns related to the
platform back-end.

Object Localization
extracts relevant
masks to orient 3D
reconstruction.

The 3D Reconstruction service solicits
masks for specific video frames, allowing
it to clearcut the area corresponding to
the object been reconstructed.

Reduce clutter and noise in
the reconstructed 3D
models.

Language Generation
reprocesses
descriptions upon
changes in asset
metadata

As different services add to the metadata
related to a specific asset, the Language
Generation uses this newly available
information and reprocesses the
descriptions.

Updating descriptions upon
newly available metadata.

Message
parameterization is
now supported.

Components now are able to
communicate more effectively with
parameterized messages that qualify
different aspects of events they describe.

Support services in deciding
when to run and how to
process data.

 D6.4 – V1.0

Page 13

These functionalities will be extended and consolidated in the next development iterations in
order to support more user control over the V4Design processes, and towards the creation of
a more consolidated and integrated service platform.

This coordinated process has different ramifications and interdependencies. For a start, it
takes into consideration the current limitations of several main V4Design services and
components, as these have not yet reached the ultimate maturity and complexity level
intended under the project plan. Instead, while in development and progressing satisfactorily
according to the project development and implementation roadmap, these services currently
manifest several constraints. For example, the 3D Reconstruction service is not yet geared to
extract 3D models from collections of images, although early tests on the subject show
promising results. This limitation is not exclusively related to the status of this service, but also
to the manner by which collections of images are ought to be created by other modules of the
architecture, a concern that is scheduled to be addressed in the next iteration. Another
example is the Texture Extraction service, which would require a user intervention at some
point in the process of extracting textures from media content, and applying them onto
generated 3D models. This is also scheduled for the next iteration, when the V4Design
processes become more user-driven.

The following table shows the main technical limitations of the current architecture, and the
contemplated resolution plan of each.

Table 2 Technical Limitations of the Architecture

Limitation Description Resolution plan

Data from content
providers is
extracted in a
manual fashion.

The content providers’ platforms and
the V4Design platform are not yet
integrated. Content is currently
selected in a curated manner by the
providers and stored in a FTP server
for retrieval by the V4Design platform.

The plan to integrate the content
providers’ APIs has been planned
finalized, will be implemented in
M19-M20.

Textures are
manually selected.

Although the Texture Extraction is
capable of extracting several textures
from media, this process was limited
to a selection before it becomes user-
driven in the next iteration.

Devise feasible approaches,
including user-driven ones, to
select relevant textures from a set
of candidates.

3D Reconstruction
works exclusively
on videos.

The current configuration of the
platform only allows 3D models to be
reconstructed from videos.

Alternatives are being considered
to support extraction of 3D models
from images in the next iteration.

3D Reconstruction
needs to be
optimized or
scaled.

The current performance indicators of
the 3D Reconstruction pipeline needs
to be improved notably in order to
allow this process to scale.

Besides specific optimizations
contemplated on the level of 3D
Reconstruction service, plans will
be drafted to support vertical
and/or horizontal scaling of this
pipeline.

 D6.4 – V1.0

Page 14

 Characteristics of the current architecture model

In the following, we summarize the characteristics of the current architecture model
associated with the V1 platform prototype. Name, we discuss three architectural concerns:
the communication model, the data management model, and synchronization.

2.2.1 The platform’s communication model

The communication model, consisting of predefined message topics and their respective
parameters, has been updated in order to 1) allow ramifications and exceptions in the manner
by which services chain (e.g. a single service can perform several roles), and 2) to pass
instructions about the data that is being processed, its status, and type.

For instance, the 3D Reconstruction service now sends a “Frames Requested” message to the
Object Localization service, asking for the extraction of specific masks from selected frames,
so as to refine the reconstruction and eliminate noise to the extent possible.

In the following table, we show the current configuration of the communication model for the
V1 platform prototype.

Table 3 Services and Messages

Service Message
consumed

Message
params

DSRS PULL
Call

DSRS PUSH
Call

Message
produced

Crawler CRAWL_IT urls N/A Push array of
simmos

DATA_
AVAILABLE

Language
Analysis

DATA_
AVAILABLE

has_text =
True

/retrieve (Task=CR,
Id=Id, Entity=Texts)

/save analyzed text
(JSON)

TEXT_
ANALYZED

Language
Generation

REASONING_FINI
SHED

ID = id /retrieve
(Task=LA,id=id,
Entity=textAnalyzed)

/save generated
text (JSON)

TEXT_
GENERATED

Scene
Recognition

DATA_
AVAILABLE

has_video =
True

get(Task=CR, Id=Id,
Entity=Images)

Push scene per
frame

SCENE_
RECOGNIZED

Object
Localization

DATA_
AVAILABLE

has_image =
True

get(Task=CR, Id=Id,
Entity=Images)

Push
mask_generated

SCENE_
RECOGNIZED

Object
Localization

FRAMES_AVAILA
BLE

ID = id;
array frame ids

get(Task=CR, Id=Id,
Entity=Videos)

Push
mask_generated

OBJECT_
LOCALIZED

Texture
Proposal

FRAMES_AVAILA
BLE

has_masks =
True

get(Task=CR, Id=Id,
Entity=Images)

Push textures_
generated

TEXTURE_
EXTRACTED

Aesthetic
Extraction

DATA_
AVAILABLE

has_textures =
True

get(Task=TP,
Id=Id)

Push Aesthetics_
generated

AESTHETICS_
EXTRACTED

3D Reconstruct. SCENE_
RECOGNIZED

Has_video =
True

get(Task=CR,
Id=Id, Entity=Videos)

Push 3D model FRAMES_
REQUESTED

API ON_UPDATE ID = id,
others

/retrieve (d=id) N/A N/A

2.2.2 The platform’s data management model

The data management model rests on communication between the platform’s modules and
the Data Storage and Retrieval System (DSRS). Each module is enabled to push and pull data
from the DSRS according to the generic design of a V4Design service. This is done through

 D6.4 – V1.0

Page 15

HTTP protocol calls to the DSRS’s API, which wraps three distinct database systems: the
SIMMO DB, the Knowledge Base (KB), and the 3D model metadata DB.

The SIMMO DB stores raw data in SIMMO [4] format, which standardizes how media is
organized into raw data objects. The database technology used for the SIMMO database is
MongoDB. The 3D model metadata DB is a PostgreSQL database designed to store textual and
numerical content associated with the created 3D models and their variations (format,
textures applied, etc.). It also stores data used for the reconstruction process and the
appropriate relations, such as videos, frames, masks and images. The KB structures the
knowledge and metadata generated about each created asset in the form of RDF triples in a
GraphDB repository. It interfaces with the authoring tools through the platform’s API. Each
one of the three databases expose their required functionalities through an API that is only
accessible by the DSRS module. Apart from that, the module hosts a static file folder that
includes the multimedia files used by the project. Web functions are developed that enable
the V4Design modules to upload and download content into that folder. The DSRS module
and its interactions with the databases and the V4Design modules is illustrated in Figure 3.

Figure 3 Overview of the V4Design data storage and retrieval design

2.2.3 Security management

As part of the implementation of the 1st version of the V4Design platform, a preliminary
security management model was deployed.

There are different security threats to account for in distributed systems, and
countermeasures need to be accounted for in order for the system to remain operational and
reliable. We identify the following three major threats as pertinent to the V4Design platform.

 D6.4 – V1.0

Page 16

Unauthorized access

Unauthorized access may be considered as the highest threat to distributed systems,
especially if local node configurations are not well set. There is a strong case for implementing
an access control system early-on in the development process in order to govern all requests
and communication among components with a secure policy.

At this stage in the platform development, an access control policy has been deployed,
consisting of an authentication-through-middleware approach, by which using any
middleware requires authentication and session management, be it so with the system’s API,
Message Bus, or Data Storage and Retrieval. This policy can be expanded in the future to cover
aspects related to permissions, and usage quotas.

As regards the three database APIs that act on the backend of the Data Storage and Retrieval
module and are not intended to be available for public usage, stricter security measures have
been considered. More specifically, an IP address filter is applied so as to accept connections
only from the machine where the Data Storage and retrieval module is installed.

Denial of service

Involves attacks that affect the availability of information from the system to the user resulting
to paralysation of the entire operation of an organization or part of activities depending on
the attack. The use of resource control mechanism can help in solving the above problem by
applying timing responses, sizing responses, and connection control. Also problem detection
by timing latency in system can easily be done if there is a dramatic increase of latency then
denial of service (DoS) can be detected as well as addressed.

At this stage in the platform development, connection control mechanisms have been
enforced (access control credentials), mainly through the middleware (message bus and data
storage and retrieval system). In the case of V4Design, timing responses of different services
may not be applicable or accurate, therefore we adopt a more centralized approach to
security to face possible DoS attacks. In particular the deployment of a redundant copy of the
message bus to which traffic can be transferred seamlessly is contemplated in the next phase
of development this helps in preventing DoS attacks to shut down the system, since if one
copy if overloaded the other copies will start. Beyond this, and given that services only
respond to messages from the message bus, the risk of DoS attacks could be considered as
mitigated.

Information leakage

This is one of the threats of computer systems, specifically in the case of distributed systems
like the V4Design platform, where sensitive data can easily be revealed to unauthorized users
that results to lack of confidentiality, privacy violation, copyright infringement, and other
concerns.

At this stage in the platform development, only curated content provided by the consortium
partners has been used to perform functional tests on the platform and prepare a demo
dataset for evaluation and for training potential users. The risks associated with this dataset
are minimal, nonetheless several steps have been taken to mitigate the risk of information
leakage. Data storage is centralized in the platform below a wrapper that forces
authentication before pulling or pushing data. This guarantees that only certified V4Design
services can access the data, including the platform’s API responsible for passing the data to

 D6.4 – V1.0

Page 17

the users (through the tools). An asset ownership paradigm has been designed to allow the
platform to control ownership of created asset, so as the assets of one users are not shown to
another if they are private. Also, an asset origins paradigm is contemplated to describe the
copyrights associated with the raw data that was used to create the asset. This will not only
allow services to take a decision to process this data or not, but also allows to cascade these
rights throughout the transformation process by which V4Design assets are created.

In addition, other measures related to security have been taken, such as adding security
certificates to the different machines used, including those that host the middleware.

 D6.4 – V1.0

Page 18

3 THE PIPELINES

The new architecture model introduces three pipelines, each as a technical model
encapsulated in the platform’s backend. These pipelines in turn are composed of the services
that implement the technologies defined and designed in the project. Furthermore, each
pipeline centres on a specific high-level concern of asset reconstruction. The 3D
Reconstruction pipeline streamlines the process of extracting 3D models from media; the
Aesthetic pipeline streamlines the aesthetic analysis and extraction from raw data; and the
semantic pipeline streamlines the generation of descriptive rich content using semantic
analysis.

 The 3D Reconstruction Pipeline

The 3D reconstruction service architecture is structured as a collection of coupled services,
each with its own task(s). This heavily improves modularity of the system and subsequently
makes for easier understanding, development, testing and future re-use. Figure 4 illustrates
the deployed system architecture for the first prototype.

Figure 4 Overview of the currently deployed reconstruction service architecture

 D6.4 – V1.0

Page 19

Communication between internal services consists of a lightweight protocol using Remote
Procedure Call (RPC). The open source gRPC library, which allows automatic generation of
cross-platform client and server bindings for many languages (C#, C, C++, JS, Java, Python,
Clojure and others) was used. For this reason, individual service nodes such as the ‘frame
extraction service’ may be reused in nearly all development environments without the need
to change the source code or rebuild the application.

Figure 5 shows an example message that is pushed to the KB and the message bus notifying
other services that a new model was generated. A more thorough discussion concerning the
meshes exported from the reconstruction pipeline is presented in D4.3 First iteration of 3D
reconstruction and scientific Report, section 5.5.

Figure 5 Example JSON-formatted message pushed to KB and message bus

3.1.1 Dependencies

This paragraph discusses the dependencies across the different V4Design services. An
overview of internal source code dependencies (used software/libraries) is discussed in D4.3
section 5.5. The reconstruction service of the first prototype has dependencies for the
following message bus topics:

 D6.4 – V1.0

Page 20

Table 4 3D Reconstruction dependencies

Topic Provided by Purpose

DATA_AVAILABLE Any service providing raw
data (e.g. Crawler)

initiates processing if suitable raw data is
present in the message

SCENE_RECOGNIZED Scene recognition service Provides tags on a per-frame basis.

OBJECT_LOCALIZED STBOL service Contains masks on a selection of used
imagery. Useful for additional tagging &
clutter removal

TEXTURE_EXTRACTED Texture proposal service Contains data in order to retexture
meshes in different styles

Following messages are distributed by the service:

Table 5 Messages by the 3D Reconstruction service

topic name Serves following services Purpose

FRAMES_AVAILABLE Texture proposal Forwards the actual images/frames used
in the reconstruction.

OBJECT_
RECONSTRUCTED

Segmentation (Not
implemented in 1st
prototype)

Notifies services on new reconstruction

3.1.2 Limitations

The deployed system in Figure 4 has some limitations in terms of architectural design.

Stability

By having both computational-heavy and important system management code (e.g. message
bus connection) in the same node (‘Reconstruction Service’) stability issues are a concern. We
aim to tackle this limitation by splitting the “Reconstruction service” seen in Figure 4 into a
“manager service” connected to the MB and compute-heavy “reconstruction service” as seen
in the updated schema in Figure 5.

Scalability

Currently, there is no way to scale the system in a horizontal matter that is across multiple
servers / computers. For this reason the system’s capacity is limited to 1 reconstruction
processing at a given time. By implementing the proposed “manager service” it would allow
us to run many reconstructions across different servers and even different networks.

 D6.4 – V1.0

Page 21

Exposed metadata

The “Local storage service” module shown in Figure 4 exposes an API for the management of
3D model data. Part of this API should be exposed to other partners should they need more
elaborate metadata for the models than is currently send to the KB and MB. This system is
part of the “3D Model DB API” shown in Figure 4. For the 1st prototype no specialized 3d
model metadata was required. For this reason we opted to not expose the current grpc API
concerning safety reasons. In the 2nd prototype we plan to expose a subset (metadata
retrieval-only) of the current local API in either GRPC or REST.

Figure 6 Overview of future architecture with support for horizontal scaling

Figure 6 shows a draft of an updated architecture tackling these limitations. It may be
implemented with relatively minor system architecture change and supports a more stable
and horizontally scaling design.

3.1.3 Examples of generated assets

Figure 8 shows some output generated during and at the end of the 3D reconstruction
process. For each video appropriate frames were automatically extracted (Figure 7), followed
by image alignment (camera position estimation). Sparse and dense pointcloud models are
computed based on these aligned keyframes. Lastly, based on the dense pointcloud, a
textured mesh is extracted. A more detailed step-by-step elaboration of the reconstruction
module is presented in D4.3 section 5.4 (different steps according to the schema in Figure 4).

 D6.4 – V1.0

Page 22

Figure 7 Frame extraction results (5 of 102)

Figure 8 Some models generated using the 1st prototype pipeline

 The Aesthetic Analysis Pipeline

The AE pipeline contains two parts: Aesthetics extraction (AE) and Texture proposals (TP). The
input to AE is images or video frames provided by the V4Design Crawler component (CR). The
outputs of AE are tags for style and creator of given input that are sent to the Knowledge base
(KB). The input to TP is a set of selected images and video frames of 3DR and the output is a
collection of new images which have the content of given visual input and the style of famous
paintings images that are sent to the Knowledge base (KB).

The following diagram illustrates the AE pipeline.

Figure 9 The AE pipeline

Dependencies
The AE service listens to the DATA_AVAILABLE topic which is provided by Crawler and sends
the output to AESTHETICS_EXTRACTED topic. The TP service listens to the FRAMES_AVAILABLE
topic which is provided by the 3D Reconstruction module and send the output to
TEXTURE_EXTRACTED topic. In the following Table the communication between services of AE
pipeline is presented.

 D6.4 – V1.0

Page 23

Table 6 Dependencies of Aesthetic Analysis Pipeline

Topic (listen) Provided by Provided to Topic (send)

DATA_AVAILABLE Any service providing
raw data (eg Crawler)

Aesthetics Extraction
(AE)

AESTHETICS_EXTRAC
TED

FRAMES_AVAILA
BLE

3D Reconstruction Texture Proposals
(TP)

TEXTURE_EXTRACTE
D

3.2.1 Examples of generated assets

Following we present output examples generated by AE and TP services based on specific
inputs.

Aesthetics extraction input:

Figure 10 Input images used for aesthetic extraction

Aesthetics extraction output:

{"probability_style": "0.73710732", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “0", "style": "Northern Renaissance", "probability_creator": "0.55724233",
"creator": "Pablo Picasso"}

{"probability_style": "0.79951937", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “1", "style": "Fauvism", "probability_creator": "0.48697265", "creator": "Childe
Hassam"}

 D6.4 – V1.0

Page 24

{"probability_style": "0.85213825", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “2", "style": "Cubism", "probability_creator": "0.46858338", "creator": "Salvador
Dali"}

{"probability_style": "0.87316581", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “3", "style": "Expressionism", "probability_creator": "0.34179238", "creator":
"Vincent Van Gogh"}

{"probability_style": "0.78018423", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “4", "style": "Ukiyo-e", "probability_creator": "0.47149060", "creator": "Martigos
Saryan"}

{"probability_style": "0.75621650", "simmo": "115eh746-5gj5-391d-4ag6-64ker46lpa78",
“frame”: “5", "style": "Romanticism", "probability_creator": "0.56946965", "creator":
"Vincent Van Gogh"}

Texture Proposals input:

Figure 11 Input image used for texture proposals

Texture Proposals outputs:

Figure 12 Output generated by aesthetic extraction

 D6.4 – V1.0

Page 25

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": "0", "artist":
"Pablo_Picasso", "style": "Cubism", "style_image": "La_muse", "output_resource_url":
"http://160.40.51.32:10010/download/test/12962.jpg"}

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": "0", "artist":
"Leonid_Afremov", "style": "Oil_Painting", "style_image": "Rain_princess",
"output_resource_url": "http://160.40.51.32:10010/download/test/12965.jpg"}

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": “0", "artist":
"Edward_Munch", "style": "Modern_Art", "style_image": "The_scream",
"output_resource_url": "http://160.40.51.32:10010/download/test/12969.jpg"}

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": “0", "artist":
"Frances_Picabia", "style": "Abstract_Art", "style_image": "Udnie", "output_resource_url":
"http://160.40.51.32:10010/download/test/12972.jpg"}

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": “0", "artist": "Hokusai",
"style": "Ukiyo-e", "style_image": "The_Great_Wave_off_Kanagawa",
"output_resource_url": "http://160.40.51.32:10010/download/test/12975.jpg"}

{"simmo": "40450c43-8db9-416f-9ab9-32ced91cbf40", "frame": “0", "artist":
"Joseph_Mallord_and_William_Turner", "style": "Romanticism", "style_image":
"The_Shipwreck_of_the_Minotaur", "output_resource_url":
"http://160.40.51.32:10010/download/test/12978.jpg"}

3.2.2 Capacity and performance

AE service is running in V4Design server in CERTH, consumes approximately 9% of NVIDIA GTX
1080Ti and typically takes around 15.77 seconds for each image or video frame. In reference
to TP service, it consumes approximately 29% of NVIDIA GTX 1080Ti and the execution time is
around 18.17 seconds for each image or video frame.

 The Semantic Pipeline

The Semantic pipeline contains two distinct NLP-related parts: Language Analysis (LA) and
Language Generation (LG). The input to LA is texts from the captions, descriptions, Wikipedia
pages, online articles and reviews, etc. that are provided by the crawler (CR). It outputs
semantic graphs that are sent and mapped to the Knowledge Base (KB), which performs
additional reasoning and fuses the results with the output of other components (e.g. image
analysis). The input to LG is KB substructures with the contents to be verbalized, and outputs
textual reports. The following diagram shows the conceptual design of the Semantic pipeline.

Figure 13 The semantic pipeline

 D6.4 – V1.0

Page 26

3.3.1 Internal architecture and interdependencies

The LA service contains 4 main components that apply sequentially

1. Concept candidate detection

2. Entity Linking, Word Sense Disambiguation

3. Surface dependency parsing

4. Semantic analysis (deep parsing + conceptual relation extraction)

The LG service contains 2 components that apply sequentially, the first one being only used in
case of summarization (optional)

1. Content selection

2. Surface realization

3.3.2 Dependencies from other pipelines and interoperability

Both the LA and LG services communicate with the KB: LA feeds the KB, which in its turn feeds
LG. Incoming data originates from the crawler (CR). Information from other pipelines (e.g.
aesthetics) may be incorporated by the KB.

All communication with other components is performed by sending and receiving notifications
through the message bus, and exchanging data through the data store, using its API. Mapping
between the JSON structures used by the components and the internal data structures inside
the data store (e.g. the KB) are performed at the data store API layer. The following table
shows the communications involving the services of the semantic pipeline:

Table 7 Communication for semantic pipeline

Topic (listen) Provided by Provided to Topic (send)

DATA_AVAILABLE Crawler Language Analysis (LA) TEXT_ANALYZED

REASONING_ FINISHED KB Language Generation (LG) TEXT_GENERATED

3.3.3 Examples of generated assets

The following are the Input/output examples of LA shown per specific concern.

 D6.4 – V1.0

Page 27

Figure 14 Concept candidate detection

Figure 15 Word Sense Disambiguation

Figure 16 Entity linking

 D6.4 – V1.0

Page 28

Figure 17 Surface-syntactic analysis

Figure 18 Semantic analysis

 D6.4 – V1.0

Page 29

The following are output examples of LG for the input: Location (Berlin, Gendarmenmarkt)

Figure 19 Mapping to predicate-argument structure

Figure 20 Mapping to deep-syntactic structure (sentence structuring)

Figure 21 Mapping to surface-syntactic structure (introduction of functional elements and
fine-grained grammatical relations)

Figure 22 Linearization and introduction of punctuation signs

Figure 23 Resolution of morphological agreements

Figure 24 Surface form retrieval (output)

 D6.4 – V1.0

Page 30

3.3.4 Capacity and performance

On a single machine TA typically takes around 10 seconds to a minute per document
(depending on length), e.g.:

● 1000 characters: 12 seconds (full pipeline), 6 seconds (lightweight pipeline)

● 2000 characters: 17 seconds (full), 9 seconds (light)

● 6000 characters: 55 seconds (full), 15 seconds (light)

TG typically takes a few seconds to verbalize semantic structures (a dozen to a few dozen
triples).

Both services can be easily scaled by increasing available hardware resources, both vertically
and horizontally. They support concurrent requests within the limits of available RAM.

The following are the current technical limitations of the semantic pipeline:

● Candidate detection not operational in Greek.

● BabelNet disambiguation is slow on unseen data.

● Semantic analysis is not fully language-independent yet.

 D6.4 – V1.0

Page 31

4 FRONTEND MIDDLEWARE AND END-USER TOOLS

In this section, the front-end middleware of the platform and its tools, both representing the
part of the platform dedicated to supporting user interaction, are discussed. Namely, the REST
API developed to tie the front-end components with the back-end services, the Virtual Reality
tool, and the Architecture Authoring tool are described according to their status at M18. Demo
videos for the tools can be found online1.

 The V4Design REST API (NURO)

The REST API tool developed is handling the connection of the backend services with the
frontend tools. This provides a layer of security to the entire platform as the REST API by itself
requires authentication to be accessed. The tool is connected to the backend DSRS and the
message bus to relay messages to the other components of the system.

4.1.1 Supported functionalities

The REST API component can be easily integrated with the end-user applications as it is
documented on Swagger [5]. The tool provides the following functionalities to the end user
tools:

● User Functionalities related endpoints:
○ Create a new user
○ Logs the user in and creates a session
○ Gets information of an existing user
○ Updates the information of an existing user
○ Refreshes a running session to extend its expiration time
○ Ends a running session before it is expired

● Asset related endpoints
○ Creates a new asset in the database
○ Uploads the model file to the server
○ Updates the information of an asset in the database
○ Gets a specific asset
○ Gets the change history for an asset
○ Gets a list of the latest uploaded assets
○ Gets a list of assets with the matching tags
○ Gets a list of assets with a nearby location to a given address (e. g. a City)
○ Gets a list of assets with the matching reference dates
○ Adds a rating to an asset
○ Gets the ratings for an asset

● System functionality related endpoints:
○ Instructs the crawler to extract data from the specified url

1 https://drive.google.com/open?id=1I8-gXfoGVWKWwmBRASRbfw3KtyAX12as

 D6.4 – V1.0

Page 32

The documentation of the REST API on swagger helps in easy integration, as it can provide
JSON file which can be integrated in the End-User tools. Figure 25, 26 and 27 show the users,
assets and other functionalities documented on SWAGGER.

Figure 25 REST API - User functionalities

Figure 26 REST API - Asset functionalities

Figure 27 REST API - Other functionalities

4.1.2 Security concerns addressed

The REST API tool uses secure HTTP requests to handle the transfer of information from the
end user tools to the system, therefore the system is secured by TLS (Transport Layer Security).
Following that, the REST API tool uses an OAuth [6] token system to create a session ID that is
needed to request any information from the server or send any information to the server.

4.1.3 Aspects contemplated for the next iteration of development

In the next version of the REST API tool, we envision the following:

1. User profile management

 D6.4 – V1.0

Page 33

2. To be able to send messages to all the system functions as an admin
3. Proxy management
4. Add comments to 3D models
5. Version management for 3D assets

 Virtual Reality Tool

The Virtual Reality tool consists of 2 tools, one the editor tool and another as a VR tool which
can be used in the project. The tools allows game developers to import, view and use the
assets generated by the V4Design backend. The assets can be imported just in the Unity3D
project (using the Editor tool) or directly in a VR environment (Using the VR Tool).

Figure 28 and 29, represents the workflow of the Editor and VR Tool respectively.

Figure 28 Workflow of the Editor App

Figure 29 Workflow of VR Tool

 D6.4 – V1.0

Page 34

Figure 28 shows the 3 major interfaces of the Unity Editor tool. This tool is used when the
developer wants to use the V4Design application without being inside VR. This helps in the
integration of Unity tools in the work environment apart from just V4Design features. The tool
consists of the first interface for login and account creation, this is connected to the REST API
tool using RESTful APIs and takes a username and password as input. The Asset Store interface,
gets a specific number of assets from the backend and displays the assets. It creates pages for
the assets to be shown in and includes the search functionalities. The third interface in this
tool displays the assets and is linked to the Unity Libraries to download the asset from the
backend and place it inside a Unity scene.

The second tool, as shown in Figure 29, is the VR tool which consists of 4 interfaces/modules.
The first module of this is for login and account creation; this is connected to the REST API tool
using RESTful APIs and takes a username and password as input by the Virtual keyboard inside
the VR app. The second module gets the assets from backend, it gets 100 assets at once and
displays them and the user can request for more, this component also allows for search of
assets. The third module displays the information of the asset from the backend and connects
with the FBX importer, the fourth module, to import and unzip assets directly from the
V4Design servers to the VR environments in real time. The FbX importer also connects to the
FBX SDK for importing functions. The tool also consists of a questions importer that allows
the user to add questions to these assets, that when answered correctly, deletes the asset
from the VR scene. The questions are imported form the Questions database created for
V4Design and hosted by Nurogames.

4.2.1 Demonstration scenario for the Virtual Reality Tool

A demonstration scenario was designed and implemented to show how the tool’s concept
addresses the requirements of the users, namely in asset search and retrieval, and their
insertion into a Unity3D project.

The scenario starts by a user creating an account on Unity3D with a username and password.
Then the user is able to login to the system on Unity. This would start a session for the user
and the tool is responsible to manage the session.

The user is then able to see the assets in the Editor tool and view their information. The user
also has the ability to search through the assets and get the relevant asset from the backend.
Searching by tags allows for a lot of flexibility in the searching scenario. Once the users find
the correct asset, they can view all the information about the asset and read the description
coming from the Text analysis/generation modules (WP3).

Once the user wants to download the asset, they can just press download and the asset will
be placed in the current Unity3D scene they have open, just like other unity assets. This will
allow the user to quickly create an environment that can run in VR and without VR.

Following this, the demonstration presents a similar approach in VR, where the user is also
able to login through the VR application to get the assets from the V4Design asset store. The
user can see all the information about the assets and press on place to directly place them in
the VR environment. Once “Place” is pressed, the tool automatically uses the unzipper and
the FBX importer to import the asset from the V4Design servers to the Unity VR environment
in real-time. The user can then add questions to these assets, that when answered correctly,
delete the asset from the VR scene. The questions are imported from the Questions database.

 D6.4 – V1.0

Page 35

The completion of the entire scenario will help us identify the possible usability and
functionality issues.

Figure 30 Screenshots of the demo scenario

4.2.2 Description of the envisioned second version

We plan to integrate more functionalities in terms of possible commands that the end user
can send to the backend including the ability to send a link of a video to crawl data from.
Moreover, we plan to integrate more formats and metadata to be shown in realtime in the VR
application. Lastly, more APIs will be included in the upcoming iterations.

 D6.4 – V1.0

Page 36

 Architecture Design Tool (McNeel)

The Architecture Authoring tool is designed primarily as a content and process management
environment through which users can access the V4Design platform and retrieve assets from
its storage. The tool also allows users to send requests to the platform to process specific
sources for assets. When the assets sought after are retrieved by the user, they can be
imported into a CAD design environment developed on top of Rhinoceros 3D.

The prototypical version of the tool implemented and delivered at M12 has showed how
assets are displayed and then imported to the CAD environment. An example 3D model with
fake data was used in order to demo this simple process.

Technically, the current version of the Architecture Authoring tool, named version 1, is fully
integrated with the platform’s REST API, and uses it to communicate with the V4Design
platform backend. This integration not only allows the tool to access data from the platform,
but also to use the authentication and session management functionalities developed in the
API. This integration is explained in the following diagram.

Figure 31 Authentication dialogue integrated

The diagram also reveals five new interface components implemented to support the user
processes currently included in the tool. The account manager component takes care of
managing the user authentication and user session, allowing the tool to distinguish between
asset owners and store feedback from each user effectively. The index viewer initially shows
the latest assets available in the V4Design platform, and items can be previewed directly from
this component, and then imported into any Rhino project. Similarly to the index viewer, the
query viewer allows the user to query assets by tags, location, and date, and then preview
them before importing them. The preview viewer component shows the thumbnail image of
an asset and its related metadata descriptions, which include high-affinity descriptions.
Finally, a seeding component was developed to allow users to send requests to the platform.

 D6.4 – V1.0

Page 37

This preliminary module is the basis for empowering the user to direct and apply the
functionalities of the platform onto a selected set of media items, identified or retrieved by
the user. The current implementation sends a URL to be crawled for potential assets.

4.3.1 Demonstration scenario for the Authoring Tool

A demonstration scenario was designed and implemented to show how the tool’s concept
addresses the requirements of the users, namely in asset search and retrieval, and their
insertion into CAD projects in Rhinoceros 3D.

The scenario starts by authenticating the user, or creating a user account for newcomers. In
both cases, the tool interfaces with the REST API and uses its authentication mechanism.
Authentication also enables session management, in which a session is created and
maintained while the user is actively using the tool. When a session is dropped, the user has
to login again, although this could be later managed by using local storage or cookies as
deemed convenient in the upcoming development cycle. The following figure 30 shows the
authentication dialogue on top of the tool’s editor.

Figure 32 Authentication dialogue integrated

After logging in and creating a session, the user accesses the “latest assets” view, which shows
the most recently generated assets in the DSRS, which are buffered by the REST API.
Alternatively, the user can query for assets directly, using concepts, locations, and dates.
Under this, the tool sends a query request to the API, which channels it back to the DSRS and
retrieves the results. In the authoring tool, the results are shown in the same manner as the
“latest assets” view.

In order to import an asset into the Rhinoceros 3D editing environment, the user has to
download it first. For that, the user needs to select the asset from the list of results. This

 D6.4 – V1.0

Page 38

selection opens an “asset details” view, showing the asset’s tile, thumbnail, metadata, and
other related information. Upon inspecting this information, the user can choose to download
the asset and use it in the tool. The following figure 33 shows one imported asset alongside
the “asset details” dialogue.

Figure 33 Imported asset alongside the “asset details” dialogue

In addition to this scenario in which users are capable of finding, retrieving and using assets
generated by the V4Design platform, an extension was implemented to show how these
assets can be fully incorporated in the Rhinoceros 3D work cycle, including editing the asset
computationally with the Grasshopper component (see Figure 34), which demonstrates the
power of Rhinoceros 3D in manipulating generated 3D assets, and the compatibility of the
generated assets with this environment.

 D6.4 – V1.0

Page 39

Figure 34 Manipulating assets in Grasshopper

4.3.2 Description of the envisioned second version

In the following development iteration, efforts will be invested in developing further the tool’s
functionalities. This includes a consolidation of the current components, namely streamlining
the tool’s ability to retrieve any type of asset effectively, and extending the seeding capacities
to include: 1) selected items from the repositories of content providers, members of the
V4Design consortium; 2) selected links that represent a collection of media items that the user
personally curated; 3) crawl criteria that includes subjects, locations, and patterns to look for.
In addition, the content providers’ APIs will be integrated in the tool so as to permit the users
to brow.

 D6.4 – V1.0

Page 40

5 FUNCTIONAL TESTING AND EVALUATION

The communication, data management, and synchronization models were devised based on
an in-depth understanding of the functional requirements and technical specifications
associated with the V4Design process. Nonetheless, their adequacy and performance should
be functionally tested to discern how the process is implemented in a practical sense, where
different aspects (e.g. connections, data format, message handling, queuing, etc.) may
influence how the process actually works.

Therefore, a comprehensive functional evaluation was planned and executed after the initial
integration of the V1 platform prototype.

 Data collection for the functional evaluation

In order to gather the required raw data for the functional tests of the pipelines and other
modules of the integrated V1 platform prototype, the following scheme was collaboratively
drafted to describe the required data for content providers, taking into account the current
limitations of the services and their pipelines in the way they implement the technology that
each encapsulates:

 Items are each composed of a short high-quality video showing a specific scene or object

worthy of 3D reconstruction.

 Overlays, such as text or subtitles or others should be avoided.

 Each item should be accompanied with a set of metadata that represents the associated

information available on that item in the content provider database.

 Each content provider should select 20-25 items from their collection, and manually

curate the associated metadata, using the actual metadata as reference.

Accordingly, each content provider curated a selection of items for processing by the V1
platform prototype. A quality inspection of the items allowed to discard those that appear to
include problematic concerns or aspects deemed incompatible with the current maturity
status of the technologies implemented by the services. After this inspection, a set of 64 items
was selected as the main raw dataset for the functional tests (see appendix A).

It is worth noting that the content curation and quality inspection tasks took into account the
relevance of the selected items to the use cases, in terms of subject matter.

 Procedure for the functional tests

The goal of this functional evaluation is set to generate a set of 12-16 assets enriched with
metadata and associated components, sufficiently sophisticated as to represent the type of
assets that the V4Design platform is ought to generate. At the core of each asset is a 3D model,
whose successful reconstruction is key to acquire the asset. Without the model, the asset
reconstruction is deemed unsuccessful even if other pipelines (aesthetics and semantics)
performed flawlessly.

Given that the pipelines can execute in parallel and virtually independently from one another,
and taking into account that the tests conducted should shed light on the performance,
capacity, and function of each pipeline and its elements separately (to the extent possible),

 D6.4 – V1.0

Page 41

the tests first proceeded by running each pipeline independently. Later, several pipelines were
ran in parallel.

A set of instructions were devised for pipeline owners and operators to use the message bus
for running their pipelines independently, and verify first-hand the results obtained and
inspect the faults and errors incurred. The following is an example of instructions shared to
run the semantic pipeline (see appendix B for a complete list).

You need to simulate a DATA_AVAILABLE message that launches the semantic
pipeline. To do so, go the message bus API, and send a DATA_AVAILABLE topic
message with the following parameters (make sure you know the SIMMO ID of the
item you would like to run.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDes
tination=DATA_AVAILABLE&JMSDestinationType=to
pic

PARAMs [
 {
 "id":"e0605ee7-fa49-4465-a378-f2e23ec9d3b5",
 "has_texts":"true",
 "has_images":"false",
 "has_videos":"false",
 "entity":"webpage"
 }
]

In order to execute the semantic pipeline exclusively, set has_images and
has_videos as false even if the SIMMO contains such items. The pipeline is expected
to run at least one LG cycle.

The pipeline owners were asked to run the raw data through their pipelines, one item at a
time, and to track their progress in a shared handbook that shows what element has been
processed by which pipeline and the results achieved. As soon as the results of the processing
became available, they were inspected for completion and quality, and if they meet the
required threshold then they were listed under the generated data set. In some cases, items
were reprocessed to test if specific errors or quality aspects have been addressed.

 Results of functional tests

In general, the results of the tests reveal the dynamics of the platform in relation with input
data, and its ability to cope with different input, in terms of input quality, content, metadata,
and other aspects.

In terms of 3D reconstruction, more than around 60% of the available data was processed,
generating 20 3D models of varying quality and size. During this data processing, potential
weaknesses and incompatibilities in the implemented 3D reconstruction process were
analysed, and some were addressed during this development cycle. Most of these limitations
were already known, but the data processing offered a window on to their dynamics. For
instance, the duration and the inherent camera motion inside the video can influence the

https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic

 D6.4 – V1.0

Page 42

quality of generated models, but this does not render the resulting models useless or
unusable. To the contrary, the reconstruction algorithm is able to generate models with
relevant features (e.g. correct measurements and proportions, accurate sections, etc.). Also,
the presence of textual overlays in the videos can cause an unmitigable effect on the outcome,
but segments of videos that do not contain overlays can still be selected and used. The tests
also allowed to understand how to design a user-driven process of empower 3D
reconstruction and provide it with well-selected and suitable input. Also, the results show that
it is possible to predict the quality and other aspects of the outcome based on a visual analysis
of the input video.

In terms of semantic analysis, almost 95% of the available data was processed, generating
descriptions and metadata where raw textual information is associated with the video items.
The tests carried out show that the semantic pipeline is consistent in its response times for
both English and for Spanish. Two versions of the analysis pipeline have been tested: without
concept ranking (for summarization): ~7 seconds for 30 words, ~14 seconds for 300 words;
with concept ranking: ~10 seconds for 30 words, ~45 seconds for 300 words. Currently, the
Semantic Analysis pipeline caches part of the results, so some queries can get faster. Also, one
current limitation is that it is possible to get timeouts for texts that take a long time to process,
depending on the configuration of the client making the request to the analysis service.
Language generation consistently answers back with a description in about 10 seconds. All
items from the V4Design repository were processed successfully with no technical issues.
However, especially on short texts such as image captions, it may happen that no useful
information can be extracted (e.g. because the text does not contain any relevant entities).

In terms of the Aesthetic pipelines, all data from V4Design repository were processed with no
technical issues. The tests carried out show that the Aesthetics pipeline is consistent in its
response times for both Aesthetics extraction and Texture proposals services. The present
execution time for a video from V4Design collection, which has 1210 frames is about 12
seconds per frame for the Aesthetics extraction module and about 17 seconds per frame for
each style for the Texture Proposal module.

 D6.4 – V1.0

Page 43

6 CONCLUSIONS

In this document we discussed the status and characteristics of the V4Design first prototype,
which includes the developed and integrated technological services and the authoring tools
for architecture and game design.

The evolution from the experimental prototype developed at M12 to the 1st prototype was
discussed, revealing how the communication model was adapted, how the data management
was implemented in the backend, and how different aspects of the platform were
synchronized.

According to the description of the V1 architecture, three main pipelines were defined and
consolidated. The 3D Reconstruction pipeline streamlines the process of extracting 3D models
from media; the Aesthetic pipeline streamlines the aesthetic analysis and extraction from raw
data; and the semantic pipeline streamlines the generation of descriptive rich content using
semantic analysis. The functions and limitations of each of these pipelines was discussed, and
a sample of results shown to exemplify the current maturity level of the implementation.

On the front-end side, the platform API, which was developed to connect the tools with the
backend is discussed, with major functionalities revealed. In addition, the first versions of the
authoring tools were also discussed, showing the new implemented features and the working
functionalities at this stage of the project. The future plans for developing further the tools
were explained.

Finally, the conducted set of functional tests to validate the integration and maturity of the
1st V4Design platform prototype was discussed. These tests have helped to consolidate
further the prototype and also to trace future development actions more effectively.

At this stage in the project, preliminary user evaluations are planned in order to expand the
assessment of the 1st prototype, and to illustrate further the requirements for the second
prototype in terms of user interaction, and the ecosystem of usage that would surround any
potential deployment in the near future.

 D6.4 – V1.0

Page 44

7 REFERENCES

[1] D6.1 Roadmap towards the implementation of the V4Design platform. Deliverable
published under WP6 in V4Design.

[2] D6.2 Technical requirements and architecture. Deliverable published under WP6 in
V4Design.

[3] D6.3 Operational prototypes and user interfaces for architecture and VR game design
application. Deliverable published under WP6 in V4Design.

[4] Tsikrika, T., Andreadou, K., Moumtzidou, A., Schinas, E., Papadopoulos, S., Vrochidis, S., &
Kompatsiaris, I. (2015, January). A unified model for socially interconnected multimedia-
enriched objects. In International Conference on Multimedia Modeling (pp. 372-384).
Springer, Cham.

[5] Swagger framework: https://swagger.io/

[6] Oauth token system https://oauth.net/

https://swagger.io/
https://oauth.net/

 D6.4 – V1.0

Page 45

APPENDIX A: CURATED DATA COLLECTION

The following table shows the data items shared by content providers in order to perform the
functional tests on the integrated platform, and prepare the required dataset for the user
evaluations.

Dataset name Owner(s) Type of items
Number of

items Collections
Format of

items

PUC1 - Sc1 EF
Images + descriptions in
single-huge json 340 8 JPEG

PUC1 - Sc2 AF Images (no descriptions) 33 1 JPEG

PUC1 - Sc2 EF
Images + descriptions in
single-huge json 2650 18 JPEG

PUC2-AF AF
Images organized in
folders (no descriptions) 1500 10 JPEG

PUC2-EF EF
Images + descriptions in
single-huge json 2550 15 JPEG

PUC4 EF
Images + descriptions in
single-huge json 5 5 JPEG

Download EF
Images + descriptions in
single-huge json 4350 12 JPEG

Feb2019 New
batch EF

collections of images,
with several jsons (8) for
descriptions 24000 14 JPEG

DW_august DW
Images and videos (no
description) 14 1 JPEG, MP4

DW_Mesh DW
real scanned and fitted
3D model

Flickr CERTH Only images 53740 137 JPEG

Wiki CERTH Only images 41 1 JPEG

Symmetrical
Items CERTH

Images with large jsons
for descriptions 2500 4 JPEG

Videos-AF AF

Timestamp available for
most of the videos on
excel on FTP same folder
as the videos. 57 8 MOV, MP4

Videos-AF AF

Film clips 1-4 mins long,
suitable for 3D extraction
on FTP together with
Metadata 30 MP4

Videos-SfP SLRS

Videos (full length
documentaries), some
with frames 3 3 MP4

Videos-SfP-
Shots SLRS

Videos (shots for 3D
reconstruction) 5 1 MP4

 D6.4 – V1.0

Page 46

Videos-DW DW
Videos (drone footage for
3D reconstruction) 32 1 MOV

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

 D6.4 – V1.0

Page 47

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Single pan shot (flyby,
flyover, flyaround) 1 1 MP4

Videos-DW DW
Videos (drone footage for
3D reconstruction) 4 1 MOV

Videos-DW DW
Videos (drone footage for
3D reconstruction) 3 1 MOV

Videos-DW DW
Videos (drone footage for
3D reconstruction) 5 1 MOV

Videos-DW DW
Videos (drone footage for
3D reconstruction) 10 1 MOV

Videos-DW DW
Videos (drone footage for
3D reconstruction) 1 1 MP4, HLS

Videos-DW DW
Videos (drone footage for
3D reconstruction) 3 1 MP4

Videos-DW DW
Videos (drone footage for
3D reconstruction) 5 1 MP4

Videos-DW DW
360 video publishes on
Facebook (DW Travel) 1 1

Video,
description

Videos-DW DW
Video series of drone
footage 237 (ongoing) 1 Video, tags

 D6.4 – V1.0

Page 48

APPENDIX B: INSTRUCTIONS FOR RUNNING THE V4DESIGN PIPELINES

The following instructions have been collaboratively composed by the technical partners to
guide the testing and execution of different pipelines.

Asking for a crawled resource to be reprocessed:
Go to the message bus API, and send a CRAWL_IT topic message with the following parameters.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDesti
nationType=topic

PARAMs {

 "type": "SIMMO",

 "entity": "webpage/image/video",

 "value": "e0605ee7-fa49-4465-a378-f2e23ec9d3b5"

}

When the Crawler sees that the type is an existing SIMMO, is does not crawl it but launches a
DATA_AVAILABLE message with the item’s details as if it were crawled from the web.

Asking to crawl a resource:

Go to the message bus API, and send a CRAWL_IT topic message with the following parameters.
Please note that only type “webpage” will be supported for now.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDesti
nationType=topic

PARAMs {

 “type”: “webpage”,

 “ value”: “www.webpageaddress.com”

}

Running the semantic pipeline:

You need to simulate a DATA_AVAILABLE message that launches the semantic pipeline. To do so, go
to the message bus API, and send a DATA_AVAILABLE topic message with the following parameters
(make sure you know the SIMMO ID of the item you would like to run.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&J
MSDestinationType=topic

https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=CRAWL_IT&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic

 D6.4 – V1.0

Page 49

PARAMs [

 {

 "id":"e0605ee7-fa49-4465-a378-f2e23ec9d3b5",

 "has_texts":"true",

 "has_images":"false",

 "has_videos":"false",

 "entity":"webpage"

 }

]

In order to execute the semantic pipeline exclusively, set has_images and has_videos as false even if
the SIMMO contains such items. The pipeline is expected to run at least one LG cycle.

Running the 3DR pipeline:

You need to simulate a DATA_AVAILABLE message that launches the 3DR pipeline. To do so, go the
message bus API, and send a DATA_AVAILABLE topic message with the following parameters (make
sure you know the SIMMO ID of the item you would like to run.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&J
MSDestinationType=topic

PARAMs {

 "id": "e0605ee7-fa49-4465-a378-f2e23ec9d3b5",

 "has_texts": “false”,

 "has_images": “false”,

 "has_videos": “true”,

 "entity": "webpage"

 }

https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=DATA_AVAILABLE&JMSDestinationType=topic

 D6.4 – V1.0

Page 50

Keep in mind that it is difficult to execute the 3DR pipeline exclusively. Each
OBJECT_RECONSTRUCTED message will launch the Aesthetic pipeline, unless it is disabled from the
3D Reconstruction service. Also, disable the ON_UPDATE message from KB in order not to invoke LG.

Running the Aesthetics pipeline:
You need to simulate a OBJECT_RECONSTRUCTED message that launches the Aesthetic pipeline. To
do so, make sure that you are using an example of a 3D model reconstructed by V4D. Go the the
message bus API, and send a OBJECT_RECONSTRUCTED topic message with the following
parameters.

URL https://34.253.156.62:8162/admin/send.jsp?JMSDestination=OBJECT_RECONSTRU
CTED&JMSDestinationType=topic

PARAMs {

 "asset_id": "e0605ee7-fa49-4465-a378-f2e23ec9d3b5"

 }

In order to test this pipeline separately, without invoking LG when. Disable the ON_UPDATE message
launched by KB.

Retrieving the data generated by your pipeline:

Remember that you CANNOT read the messages circulated by the services from the message bus
API, but you can do so from the REST API.

The current API interface is the Swagger:

https://v4design-integration.nurogate.com/Server/Swagger/#/

You can create your own API user and log in to execute the calls.

https://34.253.156.62:8162/admin/send.jsp?JMSDestination=OBJECT_RECONSTRUCTED&JMSDestinationType=topic
https://34.253.156.62:8162/admin/send.jsp?JMSDestination=OBJECT_RECONSTRUCTED&JMSDestinationType=topic
https://v4design-integration.nurogate.com/Server/Swagger/#/

 D6.4 – V1.0

Page 51

Basic API usage

● Use /User/Create or /User/Login (open the endpoint > click "try it out" > fill out the required

fields > click "execute")

● Swagger-UI uses the API in a regular way just as any other application has to do, so this can

be used to see how requests have to be formatted etc.

● In the response there will be the field "SessionId", the value of that field is required in the

next step

● Click "Authorize" in the top left of the Swagger-UI

● In the popup fill in the session id that you got from the response and then click "Authorize"

to confirm

● The Swagger-UI will now send the session id as http header "X-V4DesignSession" on each

request, this is also the way other API clients have to send the session id. the name of the

header is also noted in the popup that opened to fill in the session id in the previous step

Things to keep in mind when using the API

● Dates have to be formatted as “YYYY-MM-DD” as defined by the swagger standard (see RFC

3339, section 5.62, full-date notation)

● DateTimes have to be formatted as “YYYY-MM-DDThh:mm:ss+xx:yy” as defined by the

swagger standard (see RFC 3339, section 5.63, date-time notation)

● It is not possible to update assets that have been automatically generated by other

components using the /Assets/Update/{AssetId} endpoint because it is currently not defined

how the API should handle these modifications

2 https://tools.ietf.org/html/rfc3339#section-5.6

3 https://tools.ietf.org/html/rfc3339#section-5.6

 D6.4 – V1.0

Page 52

APPENDIX C: SOURCE CODE AND DEMOS

In order to house the codes of the different modules and make them available for other
partners in the consortium to consult, a GitLab repository account has been created for the
project. This account allows partners to publish code securely, and control access to it
(privately shared or public). Each service, middleware module, and tool have its code hosted
on this repository. This is explained in the following table.

Table 8 Licensing and distribution of V4Design modules

Module Policy Code repository License

Language
Analysis

Public V4Design code repository:
https://gitlab.com/v4designEU/v4d-text/v4d-text-

integration

Most likely
license:
Apache
Licence v2.0.
Possible
different
license for
third-party
components.

Language
Generation

Public V4Design code repository:
https://gitlab.com/v4designEU/v4d-text/v4d-text-

integration and
https://gitlab.com/v4designEU/v4d-

text/generation-grammars

Most likely
license:
Apache
Licence v2.0.
Possible
different
license for
third-party
components.

V4D Crawler Protected V4Design code repository:
https://gitlab.com/v4designEU/v4d_crawler

Apache
Licence v2.0

Aesthetics
Extraction

Protected V4Design code repository
https://gitlab.com/v4designEU/v4design-

aesthetics

Apache
Licence v2.0

Texture
Proposals

Protected V4Design code repository:
https://gitlab.com/v4designEU/TP

Apache
Licence v2.0

KB Population
and Reasoning

Protected V4Design code repository:
https://gitlab.com/v4designEU/saveinkb

Apache
Licence v2.0

https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/v4d-text-integration
https://gitlab.com/v4designEU/v4d-text/generation-grammars
https://gitlab.com/v4designEU/v4d-text/generation-grammars
https://gitlab.com/v4designEU/v4d_crawler
https://gitlab.com/v4designEU/v4design-aesthetics
https://gitlab.com/v4designEU/v4design-aesthetics
https://gitlab.com/v4designEU/TP
https://gitlab.com/v4designEU/saveinkb

 D6.4 – V1.0

Page 53

KB retrieval
(for one
element)

Protected V4Design code repository:
https://gitlab.com/v4designEU/retrievebykb

Apache
Licence v2.0

KB retrieval
(for many
assets)

Protected V4Design code repository:
https://gitlab.com/v4designEU/retrieveall

Apache
Licence v2.0

Object
Localization

(STOL)

Protected V4Design code repository:
https://gitlab.com/v4designEU/v4design-

stbol/tree/master/objects/Mask_RCNN-master

Apache
Licence v2.0

Scene
Recognition

Protected V4Design code repository:
https://gitlab.com/v4designEU/sr

Apache
Licence v2.0

Building
Localisation
(STBL)

Protected V4Design code repository:
https://gitlab.com/v4designEU/STBL

Apache
Licence v2.0

3D
Reconstruction

Protected V4Design code repository:
https://gitlab.com/v4designEU/reconstruction

TBD

Message bus Public Publicly available from the original
developers’ website. V4Design code
repository: https://gitlab.com/v4designEU/v4d-

messagebus

Apache
Licence v2.0

V4D REST API Protected V4Design code repository:
https://gitlab.com/v4designEU/v4d-rest-api

Apache
Licence v2.0

Data Storage
and Retrieval

Protected V4Design code repository:
https://gitlab.com/v4designEU/v4d_data_storage

Apache
Licence v2.0

MongoDB API Protected V4Design code repository:
https://gitlab.com/v4designEU/v4d_mongodb_api

Apache
Licence v2.0

Video Games
Authoring tool

Protected V4Design code repository:
https://gitlab.com/v4designEU/v4d4unity

Apache
Licence v2.0

Architecture
Authoring tool

Public V4Design code repository:
https://gitlab.com/v4designEU/v4d4rhino

MIT

Demo videos for the tools can be found at the following link:

https://drive.google.com/open?id=1I8-gXfoGVWKWwmBRASRbfw3KtyAX12as

https://gitlab.com/v4designEU/retrievebykb
https://gitlab.com/v4designEU/retrieveall
https://gitlab.com/v4designEU/v4design-stbol/tree/master/objects/Mask_RCNN-master
https://gitlab.com/v4designEU/v4design-stbol/tree/master/objects/Mask_RCNN-master
https://gitlab.com/v4designEU/sr
https://gitlab.com/v4designEU/STBL
https://gitlab.com/v4designEU/reconstruction
https://gitlab.com/v4designEU/v4d-messagebus
https://gitlab.com/v4designEU/v4d-messagebus
https://gitlab.com/v4designEU/v4d-rest-api
https://gitlab.com/v4designEU/v4d_mongodb_api
https://gitlab.com/v4designEU/v4d4unity
https://gitlab.com/v4designEU/v4d4rhino
https://drive.google.com/open?id=1I8-gXfoGVWKWwmBRASRbfw3KtyAX12as

